

AMO Overview

HPC and Manufacturing

September 21, 2016 Washington DC Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov

- Overview of DOE Advanced Manufacturing Office
- Technology Assistance Programs
- Research and Development Consortia
- Research and Development Projects

Clean Energy and Manufacturing: Nexus of Opportunities

<u>Goals</u>

- Develop a robust U.S. clean energy economy where products are developed here and manufactured here
- Make the entire U.S. manufacturing sector more competitive by making it more energy productive

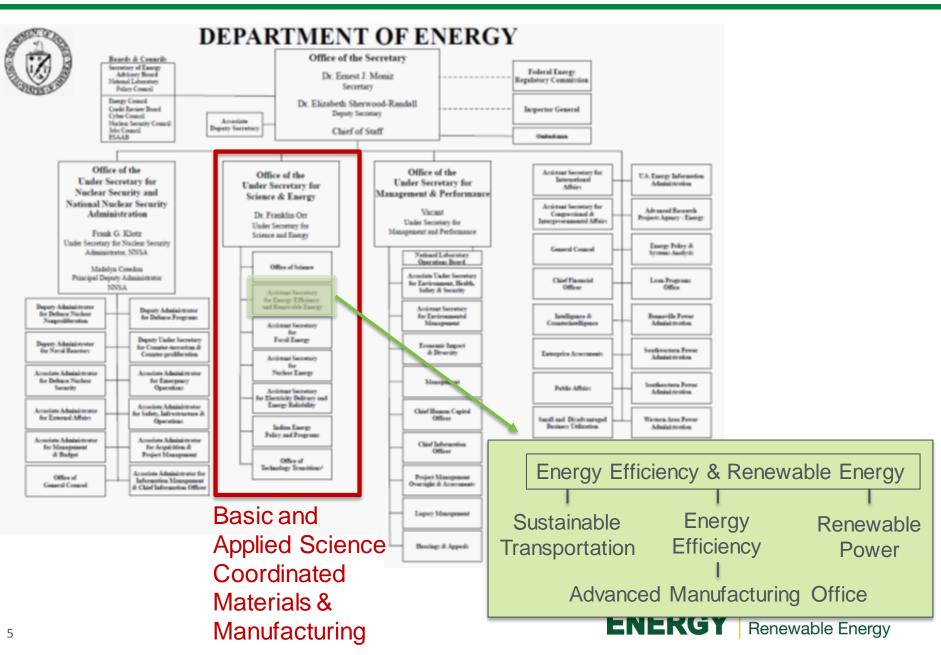
Advanced Manufacturing and Mission Innovation

ABIA

5

Mission Innovation Clean Energy R&D Focus Areas

	õ										"Un	ARIC		ORE.	3	MIRATE					
	AUSTRA	BRAZIL	CANAD	CHILE	CHINN	DENNA	SURO-	FRANC UNION	GERMAN	NDIA	MDONIC	ITALY CSIA	IAPAN	KINGA	MEXICON OF SAUD.	NORINI	AFPUD.	SWEDE. OF KORE.	MITER	UNITE ARAB EMILE	UNIT CONINGON
INDUSTRY & BUILDINGS													•				:•:				
VEHICLES & OTHER TRANSPORTATION	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•
BIO-BASED FUELS & ENERGY	•	•	•		۰	•	•	•	•	•	•	•			•	•	•	•	•	•	•
SOLAR, WIND & OTHER RENEWABLES	0	•	۰	۰	•	•	•	•	٠	•	۰	•	۰	۰	•	•	•	٠	٠	•	•
NUCLEAR ENERGY	٠	۰	۰		۰												۲		۰	۰	•
HYDROGEN & FUEL CELLS	۰	•	•			۲	۲		۲	۰			۰	۰		۰	۰			۰	•
CLEANER FOSSIL ENERGY		٠	٠		۰	•			۰	۰	۲			۰			٠				•
CO, CAPTURE, UTILIZATION & STORAGE	•	•	•		•	•	•	•	•				•	۰	۲	۰	۲		•	•	•
ELECTRICTY GRID	•	۰	۲	۲	۰	•	۲	•	۲	۰	۰	•	•		۲	•	۲	•	•	۲	•
ENERGY STORAGE	•	•	•	•	•	•	۰	•	•	•	•	•	•	۰	۰	•	•		•	•	•
BASIC ENERGY RESEARCH	•		•			•	•	•		•	۰	•	•	•		•		•	•		•


- Doubling Clean Energy R&D
- Framework for Clean Energy Targets
- Includes Advanced Technologies for Manufacturing of Clean Energy Products and Efficiency in Manufacturing

Energy Efficiency & Renewable Energy

Indicators are for key areas of R&D investment, but do not imply a comprehensive representation of a country's full R&D on

Advanced Manufacturing in the Department of Energy

Advanced Manufacturing – Strategic Framing

Climate Action Plan (EOP / CEQ / OSTP 2014)

Advanced Manufacturing Partnership (AMP2.0) (NEC / PCAST / OSTP 2014)

Strategic Plans (DOE 2014 & EERE 2016)

Quadrennial Technology Review (DOE / Science and Technology 2015) 1) Broadly Applicable <u>Energy</u> <u>Efficiency Technologies</u> for Energy Intensive and Energy Dependent Manufacturing

2) Platform <u>Materials, Process</u> <u>and Information Technologies</u> for Clean Energy Manufacturing with Sustainable Life-Cycle Impact

Some Additional Manufacturing Related Issues

Quadrennial Energy Review (QER): 2015

- Manufacturing for Infrastructure and the Grid

A STRATEGY FOR AMERICAN

Water-Energy Nexus: 2014

- Water for Energy & Energy for Water

Energy Productivity 2030: 2015

- Double GDP/kJ Economy from Energy

Innovation Strategy: 2015

- Technology, Workforce & Capabilities

Progress Update on Job Driven Training and Apprenticeships

Job Training and Apprenticeship: 2015

- Advanced Manufacturing Skills and Opportunities

Revolution...Now The Flate Arous for the Case Deny Instruments Instruments U.S. OPPARTMENT OF ENERGY

Revolution Now: 2015

- Cost Effective New Technologies

3) Promotion of Innovation Partnerships

4) Tools and Training

Energy Intensive Industries

Primary Metals 1608 TBTU

Petroleum Refining 6137 TBTU

Chemicals 4995 TBTU

```
Wood Pulp & Paper
2109 TBTU
```

Glass & Cement 716 TBTU

Food Processing 1162 TBTU

Processes for Clean Energy Materials & Technologies Energy Dependence: Energy Cost Considered in Competitive Manufacturing

Solar PV Cell

Carbon Fibers

Light Emitting Diodes

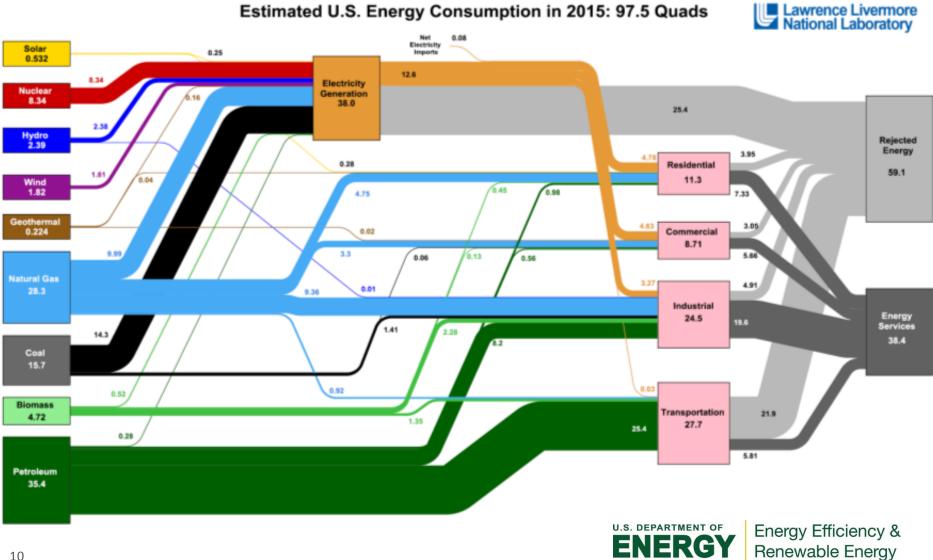
Electro-Chromic Coatings

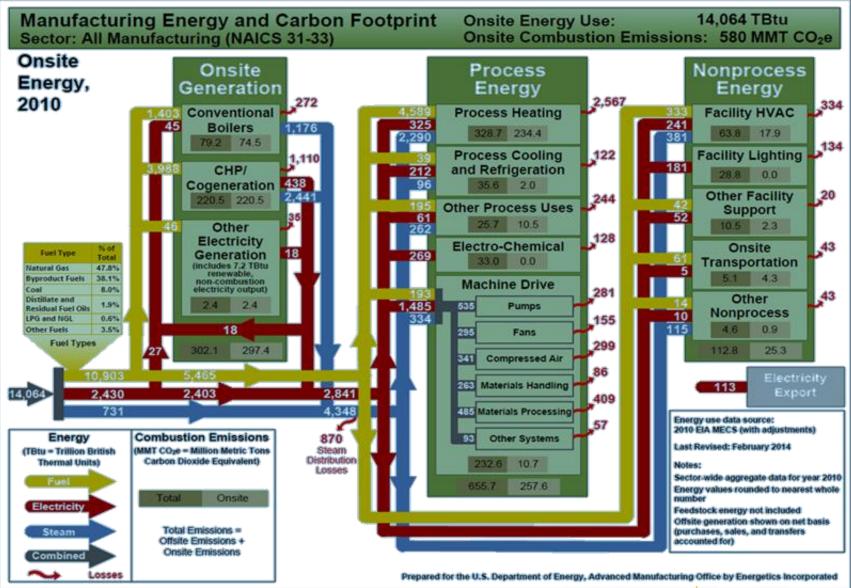
Membranes

EV Batteries

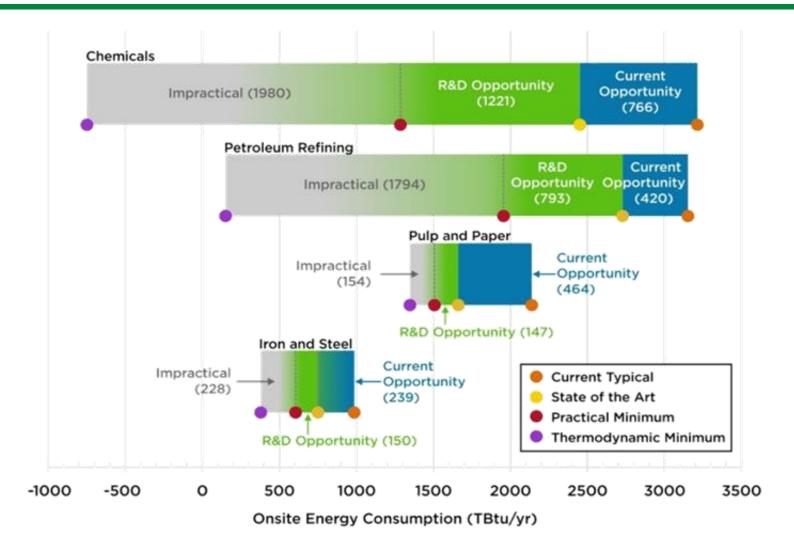
Multi-Material Joining

Water Desalination



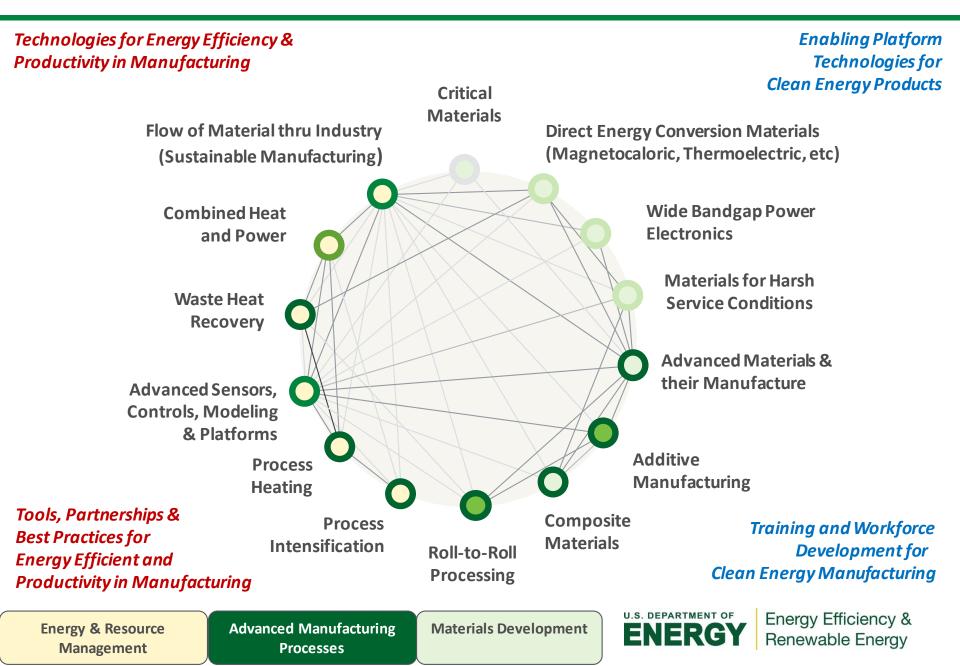


Estimated U.S. Energy Consumption in 2015: 97.5 Quads


Renewable Energy

Deeper Look at Energy in Manufacturing

Manufacturing Bandwidth Studies: Energy Savings Potential


Current opportunities represent energy savings that could be achieved by deploying the most energy-efficient commercial technologies available worldwide. R&D opportunities represent potential savings that could be attained through successful deployment of applied R&D technologies under development worldwide

Energy Efficiency & Renewable Energy

¹² AMO: September 2015

Quadrennial Technology Review: Manufacturing

Advanced Manufacturing Topical Areas

Efficiency Technologies for Manufacturing Processes (Energy, CO₂)

- (1) Advanced Sensors, Controls, Modeling and Platforms (HPC, Smart Manufacturing)
- (2) Advanced Process Intensification
- (3) Grid Integration of Manufacturing (CHP, DG and DR)
- (4) Sustainable Manufacturing (Water-Energy, New Fuels & Reused Feedstocks)

Platform Materials & Technologies for Clean Energy Applications

(5) Advanced Materials Manufacturing

(incl: Extreme Mat'l., Conversion Mat'l, etc.)

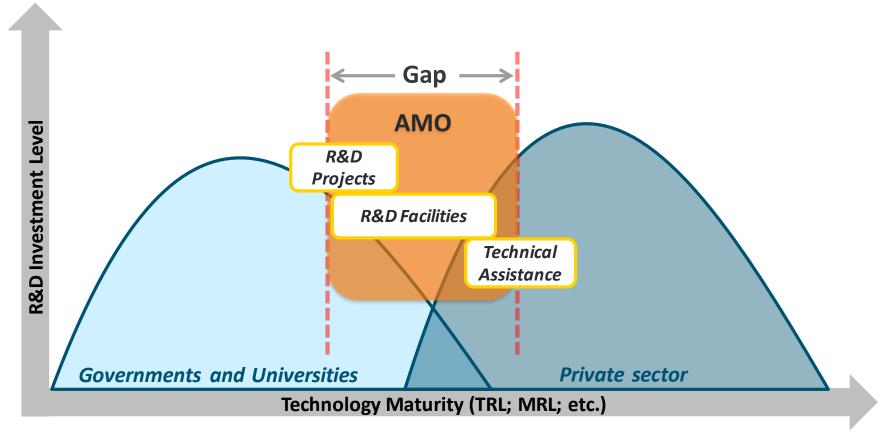
- (6) Critical Materials
- (7) Advanced Composites & Lightweight Materials
- (8) 3D Printing / Additive Manufacturing
- (9) 2D Manufacturing / Roll-to-Roll Processes
- (10) Wide Bandgap Power Electronics
- (11) Next Generation Electric Machines (NGEM)

QTR Manufacturing (Ch.6) Focus Areas are mapped to Advanced Manufacturing technology topical areas

<u>Next Step</u>: Revise AMO Multi-Year Program Plan (MYPP) With Office Specific Approach

in Each Technical Area

Possible Impact Areas of Cross-Cutting Technology for Energy Intensive Industry Sectors


	Chemicals & Bio- chemicals	Petroleum Refining	Primary Metals	Forest & Food Products	Clean Water
SMART Manufacturing					
Process Intensification					
CHP & Grid Integration					
Sustainable Manufacturing					

Many Sector Specific Roadmaps Being Revised through Complementary Program Supported by NIST / AmTech

Bridging the Gap from Discovery to Manufacturing

AMO: Advanced Manufacturing Office

Concept \rightarrow Proof of Concept \rightarrow Lab scale development \rightarrow Demonstration and scale-up \rightarrow Product Commercialization

- Overview of DOE Advanced Manufacturing Office
- Technology Assistance Programs
- Research and Development Consortia
- Research and Development Projects

Technical Assistance: Better Plants


- Key component of President's Better Buildings Initiative to improve energy efficiency of commercial and industrial buildings by 20% by 2020.
- Voluntary pledge by leading manufacturers and industrial-scale energy users to reduce energy intensity
- DOE provides technical assistance to meet goals

Better Plants Snapshot

Partnership Size	Total			
Number of Partner Companies	157			
Approximate Number of Facilities	2,400			
Percent of U.S. Manufacturing Energy Footprint	11.4%			
Reported Savings through 2014				
Cumulative Energy Savings (TBtu)	457			
Cumulative Cost Savings (Billions)	\$2.4			
Cumulative Avoided CO ₂ Emissions (Million Metric Tons)	26.6			
Average Annual Energy-Intensity Improvement Rate	2.1%			

Regional Distribution of Better Plants Facilities

• To date, Better Plants Partners have saved \$2.4 billion in cumulative energy costs (more than 0.45 Quads of energy)

Superior Energy Performance™

- SEP is a certification program that helps facilities meet the ISO 50001 energy management standard and verify the savings they achieve
- 28 plants have been certified so far. Nine improved energy performance by an average of 10% and saved over \$500,000 per year

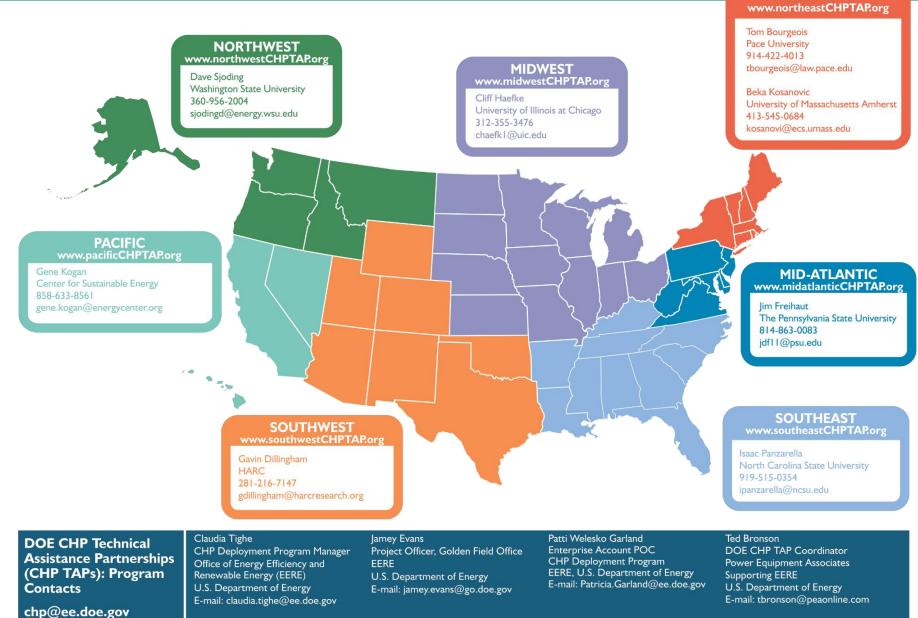
ISO 50001

Components in place:

- Top Management
- Energy Team
- Policy
- Planning
- Baseline
- Performance Metrics

Superior Energy Performance

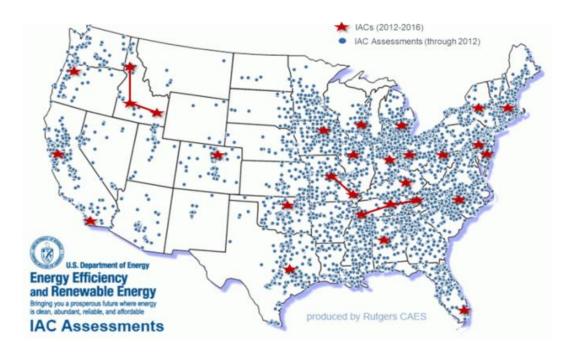
Single facility ISO 50001 conformance with verified energy performance improvement


Superior Energy

ormance

ISO 50001 is a foundational tool that any organization can use to manage energy

Technical Assistance: Combined Heat and Power


NORTHEAST

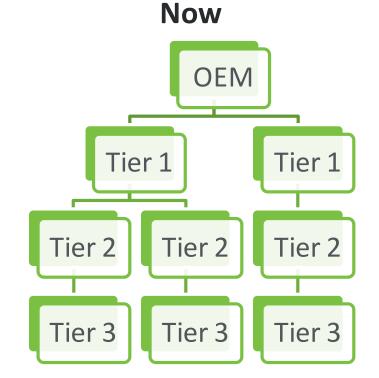
20

Technical Assistance: Industrial Assessment Centers

Energy Assessments & Student Training

University-based Industrial Assessment Centers Support for small/medium sized manufacturing Energy.gov/IAC

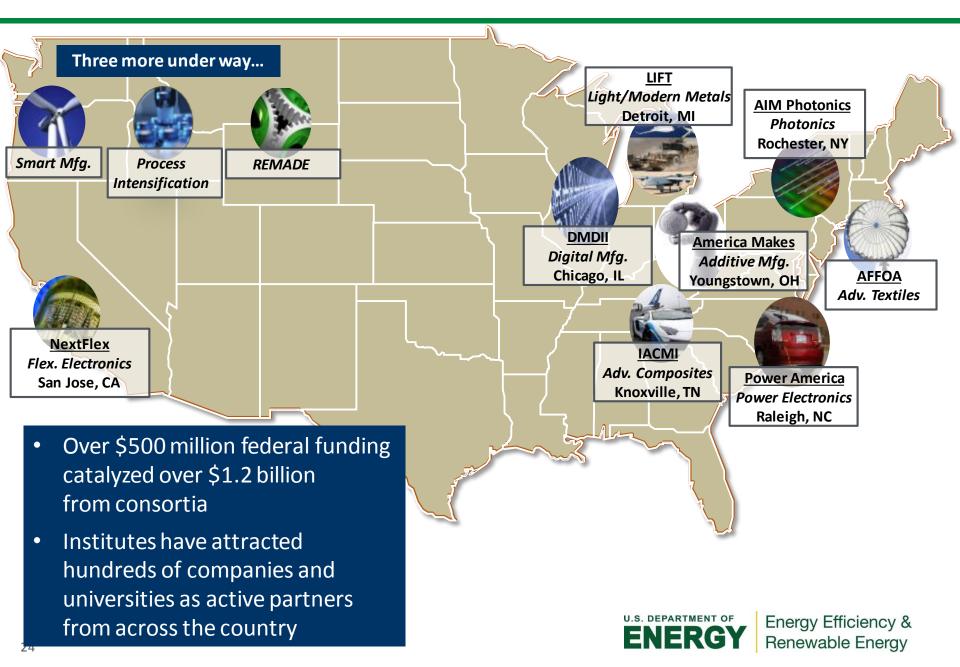
- Overview of DOE Advanced Manufacturing Office
- Technology Assistance Programs
- Research and Development Consortia
- Research and Development Projects


Shared R&D Facilities & Consortia

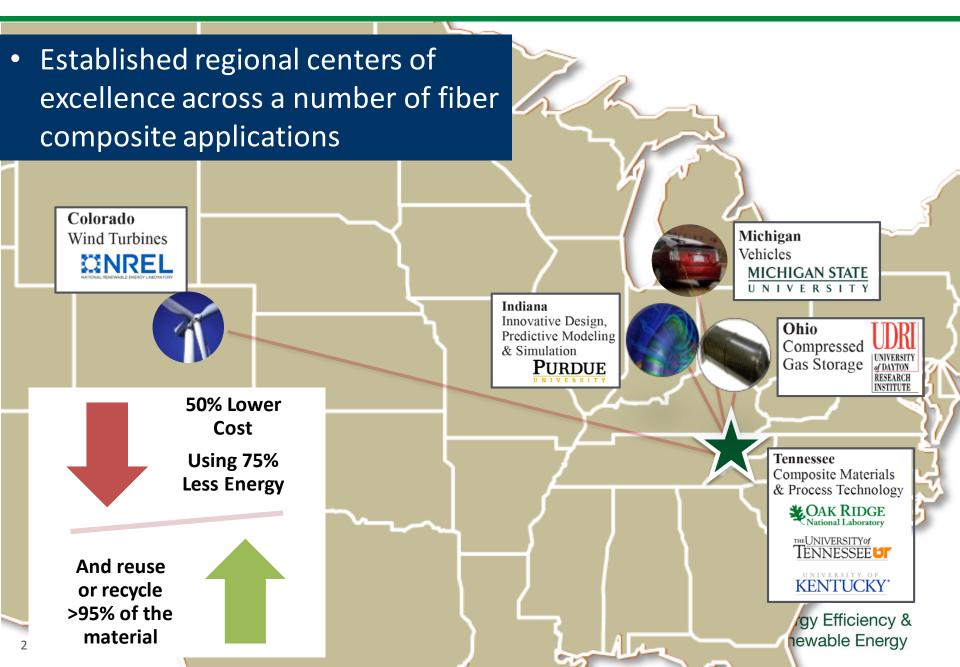
Address market disaggregation to rebuild the industrial commons

Ford River Rouge Complex, 1920s

Photo: Library of Congress, Prints & Photographs Division, Detroit Publishing Company Collection, det 4a25915.



How could we get innovation into manufacturing today?

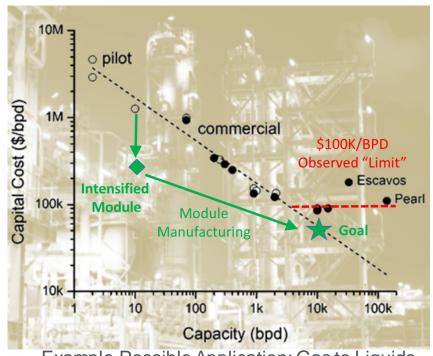

- RD&D Consortia based Eco-Systems
- Public-private partnership to scale

11 Manufacturing Innovation Institutes launched to date

DOE NNMI Institute #2 – Carbon Fiber Composites (Oak Ridge, TN)

Advanced sensors and controls for real-time process management

<u>Institute Goals</u>


- >50% improvement in energy productivity
- >50% reduction in installation cost of Smart Manufacturing hardware and software
- 15% Improvement in Energy Efficiency at systems level
- Increase productivity and competitiveness across all manufacturing sectors

Modular Chemical Process Intensification

Process Intensification has significant potential to improves costs, increase scalability, improve safety and enhance technology for variety of energy intensive, energy related and clean energy manufacturing applications

- Applied research and development into the Equipment, Methods and Technologies: Catalysis, Reactions, Separation, Mixing, Hybrid or Integrated Processes, Heating/Cooling, Thermal Recovery, etc.
- Test-bed demonstration of PI in first-of kind applications
- Develop technologies for manufacturing of process intensified modules.
- Dissemination of knowledge, pre-competitive testing of standards and practices, and education of workforce
- Potential Impact on several key sectors: Chemicals, Refining, Fiber (Pulp/Paper), Fuel Cells, Natural Gas, Environmental Management, Bio-Mass Processing, etc.

Example Possible Application: Gas to Liquids

Proposals in Review

Two upcoming AMO / DOE-led NNMI Institutes

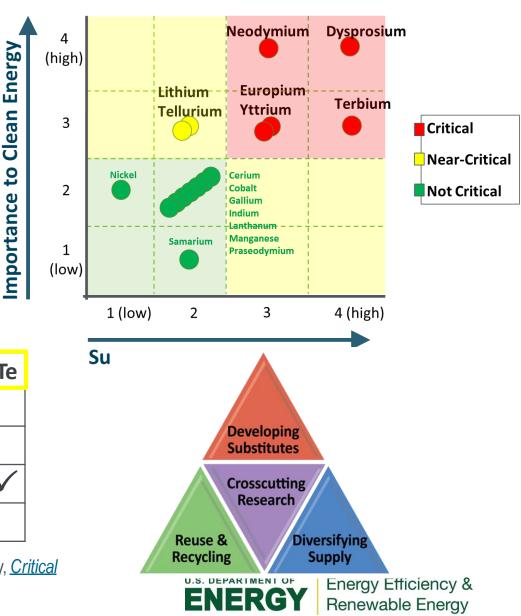
Up to \$70 million in Federal cost share for each:

Modular Chemical Process Intensification: Focus on breakthrough technologies to dramatically improve energy efficiency of novel chemical manufacturing processes.

Funding Opportunity and Teaming Lists can be found at https://eere-exchange.energy.gov/

REMADE: Dramatically reduce life-cycle energy consumption through the development of technologies for reuse, recycling, and remanufacturing of materials.

Funding Opportunity released in June


Critical Materials Institute

A DOE Energy Innovation Hub

- Consortium of 7 companies, 6 universities, and 4 national laboratories
- Led by Ames National Laboratory

	Dy	Eu	Nd	Tb	Y	Li	Те
Lighting		\checkmark		\checkmark	\checkmark		
Vehicles	\checkmark		\checkmark			\checkmark	
Solar PV							\checkmark
Wind	\checkmark		\checkmark				

Critical Materials - as defined by U.S. Department of Energy, <u>Critical</u> <u>Materials Strategy</u>, 2011.

Manufacturing Demonstration Facilities

Additive Manufacturing – Transformational Technology Big-Area Additive Manufacturing (BAAM)

Printed Cobra Project: Design to Prototype Six (6) people in six (6) January 2015 weeks.

Renewable Energy

- Printer Optimization **Design Software** (with Dassault)

- Developed Surface **Process (with Tru-Design)**

- Developed blended polymer / fiber (with Techmer)

- Developed Unique 30 Printing Tool gy Efficiency & ENERGY Renewable Energy (with Cincinnati)

Rapid Innovation Applied to Building Technologies

June 2014 September 2014 January 2015 First printed car, created First printed go-cart structure **3D-printed Shelby Cobra** in collaboration with industry **Develop the Technology Apply the Science** New MAI technology uses an alternative manufacturing process Twice the energy savings of **ORNL** Demonstrated MAI in that could halve the cost of IECC 2012 at half the thickness Integrated Building, in partnership traditional vacuum insulation panel with Clayton Homes & SOM Partners (VIP) and simplify their application

Partnership across Offices

Energy Efficiency & Renewable Energy

into building envelopes.

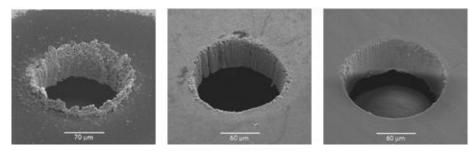
Partnerships with Vehicles and Buildings R&D

3D Printing of Large Area Structures

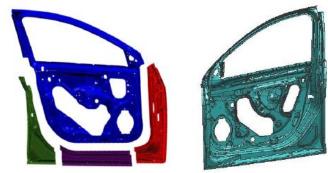
Partnership with Designers, Manufacturers, Universities, Laboratories and Suppliers

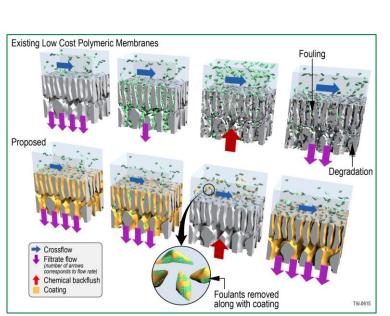
MDF: 3D Printing Wind Blade Molds

Bringing Manufacturing Innovation to the Renewable Energy Space

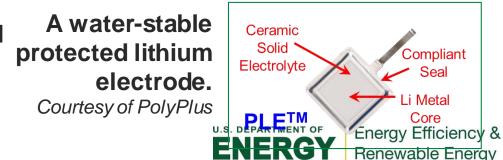

- Enable innovative blade designs
- Achieve lower overall costs and higher efficiencies
- Collaboration with Oak Ridge, Sandia, and TPI Composites

- Overview of DOE Advanced Manufacturing Office
- Technology Assistance Programs
- Research and Development Consortia
- Research and Development Projects




R&D Projects: Manufacturing Processes

Ultrafast, femtosecond pulse lasers (right) will eliminate machining defects in fuel injectors.

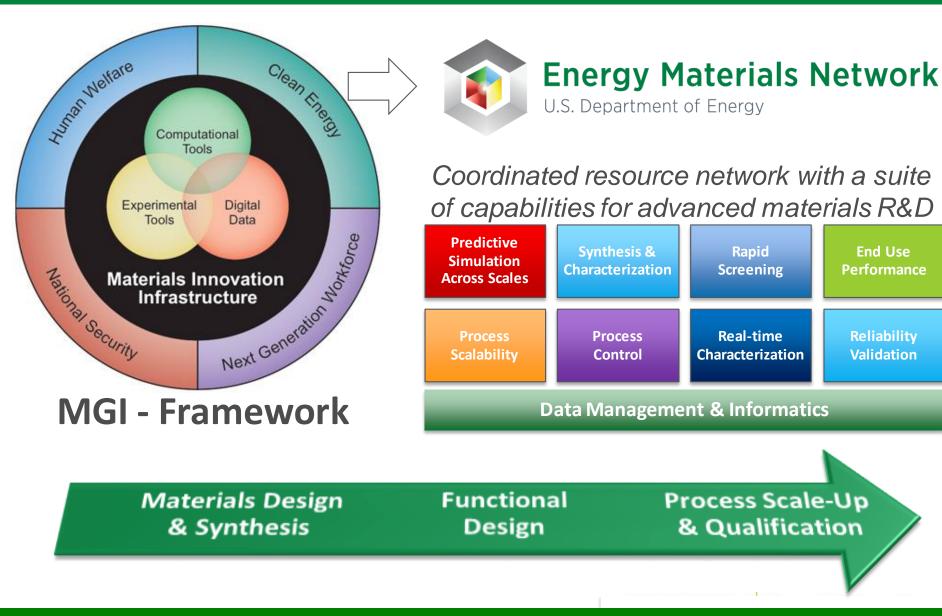

Image courtesy of Raydiance.

Protective coating materials for high-performance membranes, for pulp and paper industry.

Image courtesy of Teledyne

Energy-efficient large thin-walled magnesium die casting, for 60% lighter car doors.

Graphic image provided by General Motors.


In Support of the Materials Genome Initiative (MGI)

End Use

Performance

Reliability

Validation


New Material Innovations for Clean Energy 2X Faster and 2X Cheaper

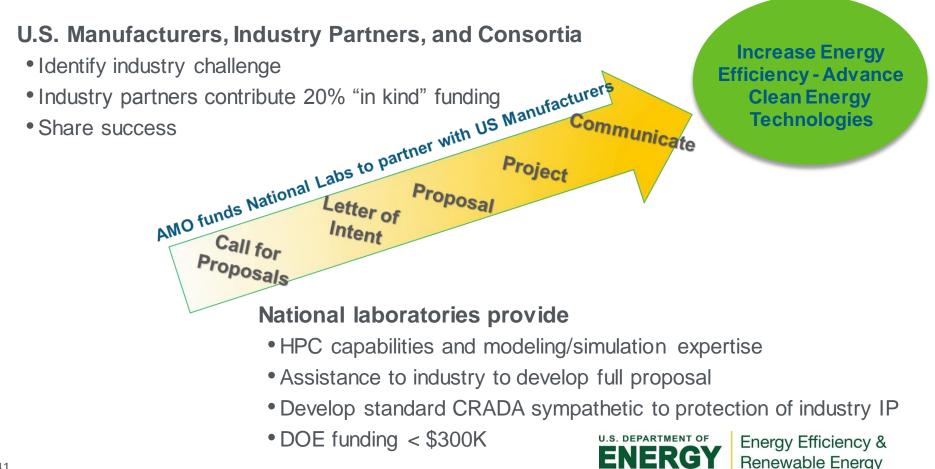
High Performance Computing for Manufacturing (HPC4Mfg)

- Program teams manufacturers with DOE's network of National Labs
- Applying High Performance Computing to face critical manufacturing challenges

- Identify New Manufacturing Relevant
 Technical Challenges to Apply HPC
- High Impact Multiscale Modelling Opportunities
- Connect to Computation Thought Leaders in Labs
- Demonstrate Value in Projects and Share Results
- Opportunity for Lab Talent (esp. Early Career) to Partner with Clean Energy Implementation Community

High Performance Computing for Manufacturing (HPC4Mfg)

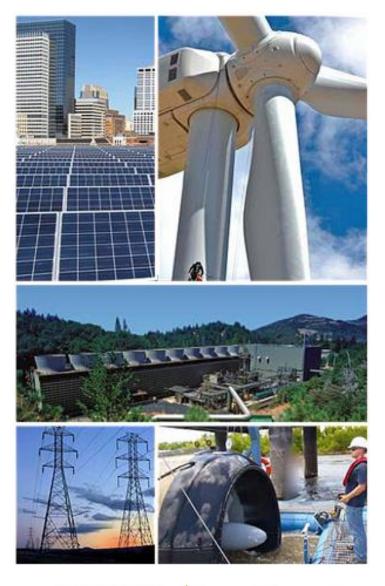
- Sponsored by the DOE's Advanced Manufacturing Office (AMO)
- Teams manufacturers with DOE's National Labs to apply High Performance Computing to face critical manufacturing challenges
- \$3M in funding available in each round
- Applications due every 6 months
- More information at <u>www.hpc4mfg.org</u>



HPC4Mfg Program: Advancing Innovation

Framework:

- Business-friendly terms and streamlined partnering process
- Leverage decades of investment in platforms, codes, and expertise
- Emphasis on open sharing of successes benefits entire sector

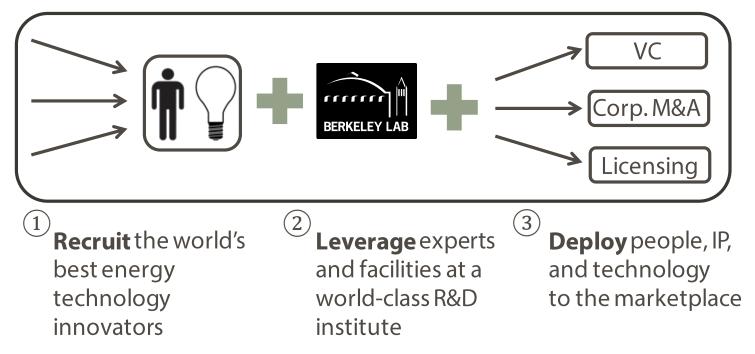

R&D: Next Generation Electric Machines (NGEM)

 Focus on developing energy efficient, high power density, integrated medium voltage drive systems.

Current efforts:

- Manufacturing of high performance thermal and electrical conductors
- Manufacturing of low-loss silicon steel
- High temperature superconducting wire manufacturing
- Manufacturing of other enabling technologies to increase performance.

Potential to save 1.6% of total U.S. electricity consumption each year



Mission Innovation: Cyclotron Rd and Innovation Accelerators

Embedded Accelerator Model:

Let the nation's best energy innovators "spin in" to our national labs

...First pilot phase spurred **\$10 million in follow-on funding** and launched 5 privately-funded startups

http://www.cyclotronroad.org/

What does Success Look Like?

Energy Products Invented Here...

...And Competitively made here for 21st Century

Thank You

Questions?

