
Programming Models and
Environments Workshop Report

Kathy Yelick
Lawrence Berkeley National Laboratory and UC Berkeley

Hardware
Challenges

• Energy Efficiency
• Node

concurrency
• Hierarchy
• Heterogeneity
• Reliability

Application
Challenges

• Multiscale and
multiphysics

• Software size
and complexity

• Data-driven
computation

• New use models

Ecosystem Issues

• Not all software
will be rewritten

• Supercomputing
market is small

• Acquiring new
skills is hard

ASCR Programming Environments Summit Report
Summary

2 Programing Models and Environments

Programming Model Stack Overview in Report

High level
Domain Specific

Abstractions

Mid level
Domain Independent

Abstractions

Low level
Execution Level

Abstractions

Science level:
• Embedded DSLs for important

domains
• Support for custom abstractions
• Support for manipulating them

Software level:
• Logical structure of parallelism and

locality
• Avoid committing to specific

architecture

Platform specific level:
• Explicit interfaces for task creation,

data movement, synchronization, etc.
• A lot of programming today is at this

level!
• New interfaces for managing power,

resilience, and introspection

Mappings
• Automate when possible
• Avoid all-or-nothing mechanisms

Draft report by a dozen researchers
from industry, academia and Labs
completed in February

Future Generic Node Architecture

4

NVRAM: Burst
Buffers / rack-local
storage (software

control)

Memory Stacks on Package
Low Capacity, High Bandwidth, Software Control?

Based on slide from J. Shalf

DRAM

DRAM

DRAM

DRAM

Bulky
Cores
Latency
Optimized

Integrated
NIC

1. Lightweight cores will have all/most of the system performance
– Need fine-grained parallelism; avoid unnecessary synchronization
– Cores not powerful enough for complex communication protocols ?

2. On-chip interconnect offers opportunities for performance
– New models of communication may be essential

3. Hardware is heterogeneous: no single ISA
– Portability and performance portability are challenging

4. New levels of memory hierarchy, possibly software-controlled
– Locality and communication-avoidance paramount

5. Performance variability may increase
– Software or hardware control clock speeds

6. Resilience will be paramount at scale
– Failures grow with the number of components and connections

Architecture Challenges and Opportunities

5 Programing Models and Environments

OpenMP Loop Parallelism is the Wrong Level

6 Programing Models and Environments

!$OMP PARALLEL DO
 DO I=2,N
 B(I) = (A(I) + A(I-1)) / 2.0
 ENDDO
!$OMP END PARALLEL DO

• OpenMP is popular for its convenient loop parallelism
• Loop level parallelism is too coarse and too fine:

– Too coarse: Implicit synchronization between loops limits
parallelism and adds overhead

– Too fine: Need to create larger chunks of serial work by combining
across loops (fusion) to minimize data movement

Libraries

Abstraction Loop Parallelism

Accelerator Offload

Sources of Unnecessary Synchronization

7 Programing Models and Environments

Bulk
Synchronous

Less
Synchronous

!$OMP PARALLEL DO
 DO I=2,N
 B(I) = (A(I) + A(I-1)) / 2.0
 ENDDO
!$OMP END PARALLEL DO

Analysis % barriers Speedup

Auto 42% 13%

Guided 63% 14%

NWChem: most of barriers are unnecessary (Corvette)

LAPACK: removing barriers ~2x faster (PLASMA)

“Simple” OpenMP parallelism implicitly
synchronized between loops

The transfer between host and GPU can be slow and
cumbersome, and may (if not careful) get synchronized

Locality in OpenMP4 is (at Best) Computation-
Centric

- 8
-

And you have to do this for every loop!
Based on slide from J. Shalf

• Titan, Mira and Edison represent 3 distinct architectures in SC
– Not performance portable across systems

• APEX 2016 and CORAL @ ANL
– Xeon Phi, no accelerator

• CORAL 2017
– IBM + NVIDIA

Where is Performance Portability?

9 Programing Models and Environments

Best case #1: OpenMP4 absorbed accelerator features
(likely), but code still requires a big ifdef

Best case #2: Architectures “converge” by 2023, perhaps
with co-design help

Two different version of the code

• Performance Portability through Compilers and Autotuning
– Automatically generate GPU and CPU code & automatically tune
– E.g., Rose (D-TEC, LLNL), Halide (D-TEC, MIT), CHiLL (X-Tune, Utah), SEJITS

(DEGAS, UCB), Legion (ExaCT, Stanford/LANL), SLEEC (Purdue)
• Data Locality in Languages and Libraries

– Specify location of data (Partitioned Global Address Space)
– E.g., UPC/UPC++ (LBNL), CAF (Rice), TiDA (LBNL), RAJA (LLNL), KOKKOS (SNL)

• Less Synchronous DAG Execution Models
– Static and dynamic DAG construction
– Examples: OCR (Intel), HPX (XPRESS), Charm++ (UIUC), Legion

(Stanford/LANL), Habanero (Rice)
• Correctness

– Precimonious and OPR (Corvette/UCB)
• Resilience Models and Technology

– Use of NVRAM (GVR, UChicago); Containment Domains (DEGAS/UTexas)

Major Programming Model Research Areas

10

Funded by X-Stack,
Co-Design and NNSA

Programing Models and Environments 11

Performance Portability

Approach #1: Compiler-Directed Autotuning

12

• Two hard compiler problems
• Analyzing the code to determine legal transformations
• Selecting the best (or close) optimized version

• Approach #1: General-purpose compilers (+ annotations)
• Use communication-avoiding optimizations to reduce memory bandwidth
• Apply CHiLL compiler technology with general polyhedral optimizations
• Use autotuning to select optimized version

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

7pt 27pt 13pt 125pt 7pt 27pt 13pt 125pt

Edison Hopper

M
St

en
ci

ls
/s

Smooth All Optimizations
+Fusion & Wavefront
+Fusion & Partial Sums
+Fusion
Baseline
Roofline Memory Bound

Results on Geometric Multigrid (miniGMG Smoother)

0

200

400

600

800

1000

1200

1400

1600

1800

Manual Tuning CUDA-CHiLL

Nvidia K20c

M
St

en
ci

ls
/s

ec

+Manual Optimizations
Thread Block Decompostion

Very preliminary
results on GPUs

Developed for Image Processing

– 10+ FTEs developing Halide
– 50+ FTEs use it; > 20 kLOC

HPGMG (Multigrid on Halide)
• Halide Algorithm by domain expert

• Halide Schedule either
– Auto-generated by autotuning with opentuner
– Or hand created by an optimization expert

 Approach #2: Domain-Specific Languages (but not too
specific)

Halide performance
• Autogenerated schedule for CPU
• Hand created schedule for GPU
• No change to the algorithm

Func Ax_n("Ax_n"), lambda("lambda"), chebyshev("chebyshev");
Var i("i"),j("j"),k("k");
Ax_n(i,j,k) = a*alpha(i,j,k)*x_n(i,j,k) - b*h2inv*(
 beta_i(i,j,k) *(valid(i-1,j,k)*(x_n(i,j,k) + x_n(i-1,j,k)) - 2.0f*x_n(i,j,k))
 + beta_j(i,j,k) *(valid(i,j-1,k)*(x_n(i,j,k) + x_n(i,j-1,k)) - 2.0f*x_n(i,j,k))
 + beta_k(i,j,k) *(valid(i,j,k-1)*(x_n(i,j,k) + x_n(i,j,k-1)) - 2.0f*x_n(i,j,k))
 + beta_i(i+1,j,k)*(valid(i+1,j,k)*(x_n(i,j,k) + x_n(i+1,j,k)) - 2.0f*x_n(i,j,k))
 + beta_j(i,j+1,k)*(valid(i,j+1,k)*(x_n(i,j,k) + x_n(i,j+1,k)) - 2.0f*x_n(i,j,k))
 + beta_k(i,j,k+1)*(valid(i,j,k+1)*(x_n(i,j,k) + x_n(i,j,k+1)) - 2.0f*x_n(i,j,k)));
lambda(i,j,k) = 1.0f / (a*alpha(i,j,k) - b*h2inv*(
 beta_i(i,j,k) *(valid(i-1,j,k) - 2.0f)
 + beta_j(i,j,k) *(valid(i,j-1,k) - 2.0f)
 + beta_k(i,j,k) *(valid(i,j,k-1) - 2.0f)
 + beta_i(i+1,j,k)*(valid(i+1,j,k) - 2.0f)
 + beta_j(i,j+1,k)*(valid(i,j+1,k) - 2.0f)
 + beta_k(i,j,k+1)*(valid(i,j,k+1) - 2.0f)));
chebyshev(i,j,k) = x_n(i,j,k) + c1*(x_n(i,j,k)-x_nm1(i,j,k))+
 c2*lambda(i,j,k)*(rhs(i,j,k)-Ax_n(i,j,k));

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Original Halide CPU Halide GPU

Ex
ec

ut
io

n
Ti

m
e

1^3

2^3

4^3

8^3

16^3

32^3

64^3

128^3

256^3

13

g+

• Generation of Complex Code for 10 Levels
of Memory Hierarchy with SW managed
cache
– 4th order stencil computation from

CNS Co-Design Proxy-App
– Same DSL code can generate to

2, 3, 4, … levels too

– Code size of autogenerated code

 DSLs to Generate Code for Hierarchical Memory

Memory Hierarchy 2
Level

3
Level

4
Level

… 10
level

DSL Code 20

 Auto Generated Code 446 500 553 819

14

Use of Rose/PolyOpt to apply DSLs to large applications and collaboration on AMR

Approach #3: Dynamic Specialization

• SEJITS: Selected Embedded Just-In-Time Specialiation:
– General optimization framework (Ctree)
– Currently implemented part of HPGMG benchmark in stencil DSL

• Within 50% of hand-optimized code
• 1400 lines of DSL-specific code; 1 undergrad over <2 months

15

1w

1d

3h

17m

2m

10s

1s

HPGMG Time (single core)

2months effort, 1400 lines of
domain-specific code generation

Programing Models and Environments 16

Locality Control

Data layouts can be used to improve locality (and find
parallelism), e.g., CAF2, UPC++, Chapel, TiDA, Raja/Kokkos
• OpenMP allows a user to specify any of these layouts
• However, the code is different for GPUs vs CPUs.
• Several approaches pursued here as well

Tiling: Abstraction for Memory Layout

17

a) Logical Tiles(CPU) b) Separated Tiles (GPU) c) Regional Tiles (NUMA)

cell tile

Separated tiles with halos

Programing Models and Environments 18

Supporting Applications without Locality

Random Access to Large Memory
Meraculous Assembly Pipeline Perl to PGAS: Distributed Hash Tables

• Remote Atomics
• Dynamic Aggregation
• Software Caching (sometimes)
• Clever algorithms and data structures

(bloom filters, locality-aware hashing)
 UPC++ Hash Table with “tunable”
runtime optimizations

Evangelos Georganas, Aydin Buluc (MANTISSA), Lenny Oliker, Jarrod Chapman (JGI), Dan Rokhsar (JGI)

Human: 44 hours to 20 secs
Wheat: “doesn’t run” to 32 secs

Grand Challenge: Metagenomes

Productivity: Enabling a New Class of Applications?

Data Fusion in UPC++

20

• Seismic modeling for energy applications
“fuses” observational data into simulation

• With UPC++, can solve larger problems

Cores: 48 192 768 3K 12K

Distributed Matrix Assembly
• Remote asyncs with user-controlled

resource management
• Team idea to divide threads into injectors

/ updaters
• 6x faster than MPI 3.0 on 1K nodes
 Improving UPC++ team support

Similar ideas being use for the Hartree-Fock algorithm as part of NWChem
study

Note
scale:
>85%
efficien
t in
worst
case

• SLEEC Project using general-purpose
compilers and domain-specific interfaces

• Use of Autotuning to align recursive
decomposition to machine

Domain Specific Library Interfaces

21 Programing Models and Environments

Programing Models and Environments 22

Rethinking Communication

Send/Receive

The + in MPI+X

Lowering Overhead for Smaller Messages

23 Programing Models and Environments

address

message id

data payload

data payload

one-sided put message

two-sided message

network
 interface

memory

cores

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Ba
nd

w
id

th
 (M

B/
s)

Msg. size

Berkeley UPC
Cray UPC
Cray MPI

MPI+X today:
• Communicate on one lightweight core
• Reverse offload to heavyweight core
Want to allow all cores to communicate
(but keep the protocol simple!)

 Lightweight communication is more
important with lightweight cores

• DMA (Put/Get)
– Blocking and non-blocking (completion signaled on initiator)
– Single word or Bulk
– Strided (multi-dimensional), Index (sparse matrix)

• Signaling Store
– All of the above, but with completion on receiver
– What type of “signal”?

• Set a bit (index into fixed set of bits)
• Set a bit (second address sent)
• Increment a counter (index into fixed set of counters)
• Increment a counter (second address for counter)
• Universal primitives: compare-and-swap (2nd address + value), fetch-and-

add handy but not sufficient for multi/reader-writers
• Remote atomic (see above) – should allow for remote enqueue
• Remote invocation

– Requires resources to run: use dedicated set of threads?

Lightweight Communication for Lightweight Cores

24 DEGAS Overview

Programing Models and Environments 25

Avoiding Synchronization

26

0

100000

200000

300000

400000

500000

600000

700000

0 500 1000

GF
LO

PS

Number of Localities (16 Cores each)

LibGeoDecomp - Weak Scaling -
Distributed
(Host Cores)

HPX
MPI
Theoretical Peak

HPX Asynchronous Runtime Performs on
Manycore

Credit: Harmut Kaiser, LSU and HPX team

Cores 0 3K 6K 9K 13K 16K

Higher is Better

Babbage

Legion Programming Model & Runtime
• Dynamic task-based

– Data-centric – tasks specify what data
they access and how they use them
(read-only, read-write, exclusive, etc.)

– Separates task implementation
from hardware mapping decisions

– Latency tolerant

• Port of S3D complete
– Currently programmed at the

runtime layer (Realm)

• Declarative specification of
task graph in Legion
– Serial program
– Read/Write effects on regions of

data structures
– Determine maximum parallelism

Weak scaling on Titan (throughput)

Weak scaling on Piz Daint (throughput)

ExaCT Co-Design Center

Available Proxies and Kernels for OCR

Application Programming
Model

CoMD Baseline
MPI+OpenMP

CoMD Legacy serial on
OCR with newlib

CoMD MPI-Lite
CoMD CnC on OCR
CoMD OCR

HPGMG
Baseline DOE
Original in
MPI+OpenMP

HPGMG MPI-Lite

HPGMG ROCR (R Stream ⇒
OCR)

HPGMG OCR

LULESH Baseline
MPI+OpenMP

LULESH Intel CnC
LULESH Serial C
LULESH CnC on OCR

Application Programming
Model

miniAMR Baseline DOE
Original in OpenMP

SNAP
Baseline Translated
into C from the
DOE Original

SNAP MPI-Lite

Tempest Baseline DOE
Original in MPI

Tempest MPI-Lite

RSBench Baseline in
OpenMP

XSBench Baseline
MPI+OpenMP

XSBench MPI-Lite
XSBench OCR
Stencil1D OCR
Stencil1D OCR
Stencil1D MPI
Stencil1D MPI-Lite

Application Programming
Model

Stencil1D Serial
Cholesky OCR
Cholesky CnC on OCR
Smith
Waterman OCR

Smith
Waterman CnC on OCR

FFT OCR
Fibonacci OCR
Synthetic
Aperture
Radar (SAR)

OCR

Global Sum OCR
triangle Serial
triangle OCR
Synch_p2p OCR

https://xstack.exascale-tech.com/git/public/xstack.git

https://xstack.exascale-tech.com/git/public/xstack.git

OpenMP and MPI Also have Ongoing Research

29

3D FFT

Gerstenberger et al (SC13)

MPI: Fast implementations and extended
interfaces for one-sided communication

Distributed
Hash Table

OpenMP: Location based on locales, places…

• Languages
– Adoption into popular programming models

• One-sided into MPI (again)
• Locality control into OpenMP

– Adoption by a compiler community (Chemistry DSL)
• Compilers

– Leverage mainstream compilers (LLVM)
– Leverage another existing “domain-specific” language
– Small compilers for small languages

• Next phase
– Focus on application partnerships
– Partnerships with library and frame work deveopers
– Collaborate with vendors on hardware desires and constraints

 If they come, we will build it!

Technology Transfer Paths

30 Programing Models and Environments

	Programming Models and Environments Workshop Report�Kathy Yelick�Lawrence Berkeley National Laboratory and UC Berkeley
	ASCR Programming Environments Summit Report Summary
	Programming Model Stack Overview in Report
	Future Generic Node Architecture
	Architecture Challenges and Opportunities
	OpenMP Loop Parallelism is the Wrong Level
	Sources of Unnecessary Synchronization
	Locality in OpenMP4 is (at Best) Computation-Centric
	Where is Performance Portability?
	Major Programming Model Research Areas
	Performance Portability
	Approach #1: Compiler-Directed Autotuning
	 Approach #2: Domain-Specific Languages (but not too specific)
	 DSLs to Generate Code for Hierarchical Memory
	Approach #3: Dynamic Specialization
	Locality Control
	Tiling: Abstraction for Memory Layout
	Supporting Applications without Locality
	Random Access to Large Memory
	Data Fusion in UPC++
	Domain Specific Library Interfaces
	Rethinking Communication
	Lowering Overhead for Smaller Messages
	Lightweight Communication for Lightweight Cores
	Avoiding Synchronization
	HPX Asynchronous Runtime Performs on Manycore
	Legion Programming Model & Runtime
	Available Proxies and Kernels for OCR
	OpenMP and MPI Also have Ongoing Research
	Technology Transfer Paths

