National Aeronautics and Space Administration

RADIOISOTOPE power systems program

7th Isotope Federal Supply and Demand Workshop

Powering Exploration

June Zakrasjek RPS Program Manager

Power to...

0

EXPLORE

DISCOVER

UNDERSTAND

Testament to the **Reliability of RPS Systems**

Voyager 2 Launched Aug. 20, 1977 MHW RTG: 158 W_e BOL

Voyager 1 Launched Sept. 5, 1977 MHW RTG: 158 W_e BOL

New Horizons Launched Jan. 19, 2006 GPHS RTG: 292 W_e BOL

Cassini Oct. 15, 1997–Sept. 15, 2017 GPHS RTG: 292 W_e BOL

LES 8* Mar. 14, 1976–2004 MHW RTG: 158 W_e BOL **LES 9*** Mar. 14, 1976–May 20, 2020 MHW RTG: 158 W_e BOL

* U.S. Air Force Mission

Mars Science Lab | Curiosity

New Horizons

Mars 2020 | Perseverance Rover

Dragonfly

Technology Investments Enable New Radioisotope Generators

MMRTG

Multi-Mission Radioisotope Power System

Next Gen RTG

Deep Space Radioisotope Power System

DRPS

Mulit-Mission Dynamic Radioisotope Power System

POWER TO EXPLORE https://rps.nasa.gov nasa-rps@mail.nasa.gov

BACK UPS

Power Progression: Deep Space Exploration

MOD 2

Utilize proven GPHS-RTG design, QU at INL refurbished, re-qualified; same couples as the multi-hundred watts used on Voyager; EODL $\sim 210 W_{\rm e}$

90% heritage design, but lower heat; lower power; 2 trades going on to consider change to stretch the housing; more efficiency of the couples; EODL~177-210 W_e

*Reestablishment of the GPHS RTG production line

"New" Next Gen RTG; which should have a EODL ~290 W_e

Innovative energy conversion investments to provide power in the deep craters of the moon to **enable spacecraft to survive** the long, dark, and cold lunar night.

Dynamic Radioisotope Power System (DRPS) could achieve efficiencies on the order of 3-4 times greater than the current state of the art, Radioisotope Thermoelectric Generator (RTG).

A demonstration unit on the moon could prove the use of dynamic power in space, making DRPS an excellent candidate to enable specific missions that could not be achieve any other way.

Next Gen RTG Project Status

* Based on DOE/NASA cost estimates

- Phase 1 design efforts by Lockheed Martin and Aerojet Rocketdyne ended with both contractors choosing SiGe conversion technology instead of advanced thermoelectrics
 - Integration of the new technology is a high-risk onramp
 - Additionally, Contractors input indicated an additional cost threat
 - Both contractors proposed a Mod 2 technology upgrade post 2028
- 2028 Next Gen RTG performance only slightly better than GPHS-RTG performance
 ~10 % gain in power, for approximately 2x the funding*

Heritage Unicouple