

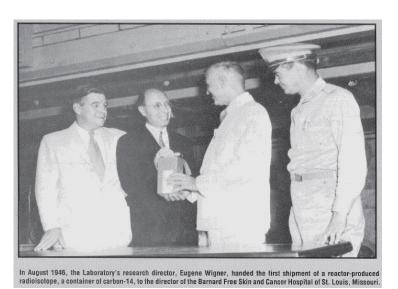
Mitch Ferren
Associate Director for Business Operations
National Isotope Development Center

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

7th Workshop on Isotope Federal Supply and Demand, January 12, 2021

Presentation Outline

- Early U.S. investment in isotope production
- Transition to foreign dependency & consequences
- Reemergence of U.S. capabilities
- Impacts of COVID on isotope supply chains



Early Investment in Isotope Production (Started in 1940s)

- Hot cell facilities were built to process a variety of isotopes.
- Developed a workforce of chemists and engineers to manage production and processing.
- Developed business operations, packaging and transportation, and logistics.

First medical isotope shipment in 1946

7th Workshop on Isotope Federal Supply and Demand

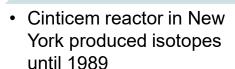
LIFE Magazine, May 1950: Isotope Circle at Oak Ridge National Laboratory

ORNL Graphite Reactor used for isotope production.

U.S. Transitioned from a Primary Producer to an Importer

1946-1985

U.S. production fueled isotope research and commercialization


1986-2000

Foreign producers take advantage of losses in U.S. production capabilities

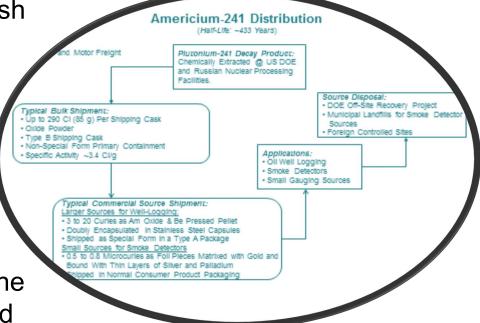
2001 - Present

U.S. production is limited, and bulk isotopes used in industry, research, and medicine are imported.

- National Labs producing isotopes for research and industry
- Calutrons converted from uranium to stable isotope enrichment

- U.S. production reactors extended outage (HFIR) and shutdown (ORR) in late 1980s
- U.S. radioisotope processing facilities shutdown in late 1980s
- DOE calutrons used for stable isotope enrichment close in 1999
- Fall of the Soviet Union in 1991;
 Russia enters global market

- U.S. currently relies on foreign sources for bulk quantity isotopes
- U.S. industry refines foreign-supplied bulk isotopes into high value end-use products
- Russia, Belgium, Canada and the Netherlands are now primary suppliers of bulk quantity isotopes


Consequences of Foreign Dependency

 Geopolitical issues can result in supply disruptions

 Foreign producers can establish single-supplier monopolies on certain isotope products, resulting in higher prices and unreliable service

 Potential erosion of U.S. production capabilities and expertise

 From a security perspective, the U.S. has minimal influence and control over global distribution of bulk isotope quantities

The Isotope Program is Taking Steps to Mitigate Potential Disruptions from Foreign Suppliers

- Continually assessing various isotope markets
- Monitoring isotopes that are foreign-supplied
- Estimating the time it will take to establish U.S. production
- Proactively addressing foreign supply chain vulnerabilities

MADE IN USA

Reemergence of U.S. Isotope Production

Investing in isotope enrichment technology

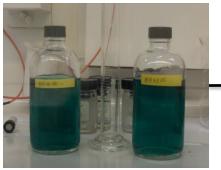
Planning for new isotope processing facilities

Supporting discovery

Developing medical isotopes

Providing needed infrastructure

U.S. Government's Role in the Supply Chain


U.S. Government Sector

U.S. Commercial/Private Sector

Bulk Supplier Market (DOE)

Bulk/Feedstock Products from:

- High Flux Reactors
- High Energy Accelerators
- Stable/Radio Inventories

Pure radiochemical or irradiated stable precursor is the starting ingredient.

Commercial Source Market

Commercial Products

- Industrial source manufacturers
- Radiopharmaceutical companies
- Specialty chemical companies

Certified Commercial Sources

Medical Generator Systems

End-Use Device Market

- Oil/gas exploration
- QA (non-destructive testing)
- Explosives detection
- Gauges / Alarms
- Biomedical imaging
- Medical therapy
- Nuclear research & safety
- Geological dating
- Environmental tracers

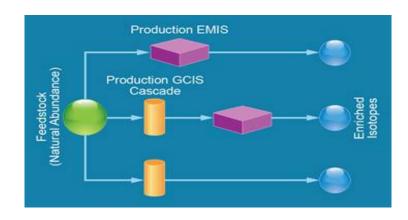
Scanning Devices Containing Sources

Medical Imaging Devices

Stable Isotopes: Diverse Medical, Research, and Industrial **Applications**

Russia and Netherlands produce kilograms of enriched stable isotopes for U.S. market

Isotope	Application	Amount
Ytterbium-176	Reactor production of Lu-177 for cancer treatment	>200 grams per year
Germanium-76	Nuclear physics (Majorana Collaboration)	~100 kilograms for initial experiment
Zinc, depleted in Zn-64	Zn coolant additive is a corrosion inhibitor in nuclear power plants. Depleting in Zn-64 reduces activation products and lowers personnel exposure during maintenance.	Hundreds of kilograms per year used by U.S. nuclear power industry
Molybdenum-98 and -100	Reactor & accelerator production of Mo-99 for medical imaging	Potentially tens of kilograms needed per year to support new production capabilities in U.S.
Strontium-88	Production of Sr-89 for palliative treatment of pain for bone cancer patients	Hundreds of grams per year
Thallium-203	Production of TI-201 for heart imaging	~600 grams per year

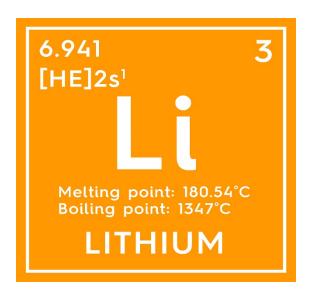


Isotope Program Stable Isotope Production & R&D Investments can Reduce U.S. Dependence

- Reestablished U.S. stable isotope enrichment capabilities in 2018 at Oak Ridge National Laboratory
- Produced ~100 milligrams of enriched Ru-96 for DOE nuclear physics research project
- Development and testing underway for enriching Yb-176, Xe-129, Mo-98, and Mo-100 for medical applications
- Planning underway to expand production capacity to kilogram quantities

Lithium-7: Power Reactor Corrosion Inhibitor

- U.S. fleet of commercial Pressurized Water Reactors (PWRs) is 100% reliant on enriched Li-7 from Russia and China
- The U.S. has ~65 operating PWRs generating ~13% of the U.S. electric power needs
- Used to buffer reactor coolant and prevent corrosion
- ~500 kilograms are imported into the U.S. annually

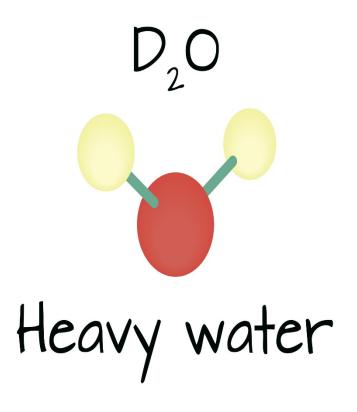


Working to Reduce U.S. Foreign Dependency on Lithium-7

- Investing in the development of alternative technologies for enriching Li-7
- Working with the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) to investigate recycling
- NEI and EPRI are also investigating the possible use of other materials instead of Li-7 for PWR chemistry.
- Working with private industry on alternative supply opportunities for advanced power reactor technology to address near and long-term needs

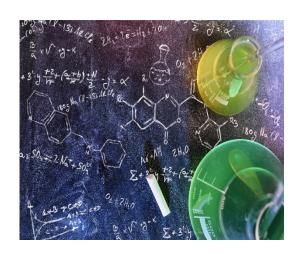
Heavy Water (D₂O): Deuterated Compounds for Research and Medicine

- Primarily used as moderator for heavy water nuclear power reactors in foreign countries
- Excess production from Canada, India, and Argentina is available to U.S. commercial markets
- The U.S. imports ~75 metric tons per year
- U.S. applications include:
 - Nuclear magnetic resonance (NMR) and mass spectroscopy (MS) instrumentation, both powerful analytical tools at major research and medical institutes.
 - Protein labeling for research and in solvent preparation
 - Drug discovery and development programs using deuterated compounds
 - Fiber optics technology applications



Working to Reduce U.S. Foreign Dependency on Heavy Water (D₂O) / Deuterium

- Investing in the development of alternative technologies for enriching deuterium
- Working with scientists at the National Energy Technology Laboratory (NETL) on potential enrichment techniques
- Monitoring supply and demand for the U.S. market



Carbon-14: Carbon Labeling for Research and Medicine

- U.S. market is ~60 to 80 curies per year
- Global market is ~1,000 to 2,000 curies per year
- Russia is currently the sole supplier of C-14
- C-14 labeled pharmaceuticals are key to new drug development
- C-14 labeled drug candidates offer unsurpassed sensitivity and specificity for FDA required administration, distribution, metabolism, and excretion (ADME) studies

C-14 production and process development is underway with the goal of reestablishing U.S. production of this important biomedical isotope within 2 to 3 years

Americium-241: Oil and Gas Exploration

- U.S. demand is ~200 grams (~680 curies) per year
- Global demand is ~650 grams (~2,200 curies) per year
- Primary application is for AmBe neutron sources used in oil and gas exploration
- Small quantities used for smoke detectors
- Russia has been the sole supplier

Production and distribution of **Am-241** has been reestablished at LANL sufficient to meet U.S. demand.

Cobalt-60: Gamma Surgery and Sterilization

High Specific Activity (HSA) Co-60

- ~500 kilocuries of HSA Co-60 is deployed throughout the U.S. in medical therapy devices
- Used for gamma surgery in treatment of brain tumors
- Currently all HSA Co-60 is imported from Russia and Canada

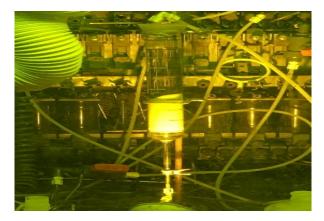
First shipment of **HSA Co-60** in over five years from the Advanced Test Reactor at INL is planned for spring 2021

Iridium-192: Gamma Radiography Applications

Nondestructive Testing for U.S. Infrastructure

- ~800,000 curies of Ir-192 are imported into U.S. annually
- Enough bulk radioisotope to build ~8,000 individual sources
- Industrial applications include shipbuilding, boiler manufacturing, and oil/gas pipeline inspections
- U.S. dominated production in this market up until 1986
- Currently imported primarily from Russia, Belgium, and Netherlands

The DOE Isotope Program continues to assess production and processing capabilities within the DOE Complex for **Ir-192**


Isotopes Formerly Only Available from Foreign

Producers; Now U.S. Produced

- **U-234** extracted from legacy PuBe sources used to reestablish U.S. inventory. U-234 is used in power monitoring devices in nuclear power plants. Shipments to industry are ongoing
- Ba-133 production is ongoing for sources used in the oil and gas industry.
- Pm-147 production development for thickness gauging sources and nuclear batteries is underway with test samples being evaluated by industry.

Uranium-234 solution undergoing precipitation process in preparation for conversion to uranium oxide (U₃O₈).

Promethium-147 purification process

Summary of Mitigations to Reduce Dependency

Isotope	Mitigation
Cf-252	Increase supply if demand increases
He-3	Evaluating new sources, recycle, & invest in alternative technologies
Fe-55	Investigating restart of production
Cs-137	Recommend alternative technology
Co-57	Investigating production method
Sr-90	Increased available inventory at PNNL
Cd-109	Maintaining production at LANL
Pd-103	Evaluating reactor and accelerator production
W-188	Reestablished production at ORNL
Ce-134	Initiating production at LANL

Isotope Program Continues to Maintain Production Capacity for Unique Commercial and Research Isotope Activities

- Californium-252 sources for reactor startups,
 nuclear fuel quality control, and coal/mineral analyzers
- Nickel-63 for explosives detection instruments
- Actinium-225 for cancer treatment research
- Heavy Element production for nuclear physics research
- Continued distribution of research quantities from legacy inventory of ~245 **enriched stable isotopes** by the U.S.
- Transitioned medical imaging isotopes Sr-82 and Ge-68 from government to the U.S. private sector production.

Supply Chain Impacts of COVID-19

COVID Consequences started in March 2020

- Passenger aircraft flight cancellations resulting in lost capacity for shipping short-lived medical isotopes, especially for international shipments.
- Lost capacity from passenger flights shifted to cargo flights. This temporarily overwhelmed the air cargo system.
- Universities halted research activities reducing demand for research isotopes.
- Commercial isotope supply chains encountered disruptions in manufacturing, end-use applications, and transportation.
- Commercial isotope product manufacturers attempted to balance supply and demand with weekly disruptions in one or more market sectors associated with the broader supply chain.

COVID Mitigation

- DOE isotope production was designated as a mission critical function within the DOE Office of Science
- Initiated transportation discussions early in the process to plan shipment routing. Discussions included shipping personnel, the customer, and the freight-forwarder, when applicable.
- Performed daily updates on shipments to the DOE Isotope Program management. This allowed real-time situational awareness.

 Freight-forwarders anticipated problems and were able to reroute shipments as necessary

Questions?

7th Workshop on Isotope Federal Supply and Demand

