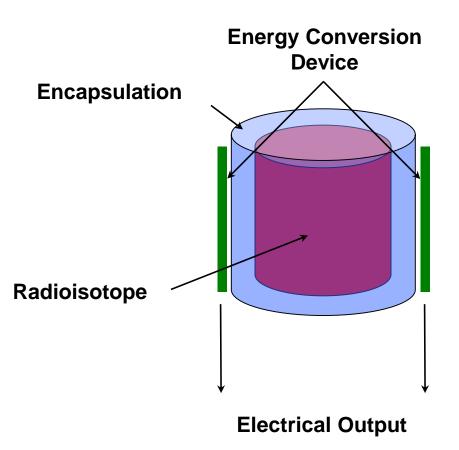





# **Radioisotope Power Source Isotope Selection**




6<sup>th</sup> Workshop on Isotope Federal Supply and Demand November 15, 2018

Marc Garland Deputy Director, DOE Isotope Program Program Manager, Isotope Program Operations Office of Nuclear Physics, Office of Science, U.S. Department of Energy



#### **Convert Energy from Radioactive Decay to Electricity**

- Radioisotope
  - Energy of radioactive decay
  - Determines output of device (independent of load)
- Encapsulation
  - Containment and shielding for radioactive material
- Energy Conversion Device
  - Several commonly used methods to convert radiant energy to electricity
  - Can be coupled with energy storage device to minimize radioisotope requirements






#### Office of Benefits of radioisotope power sources: High energy density

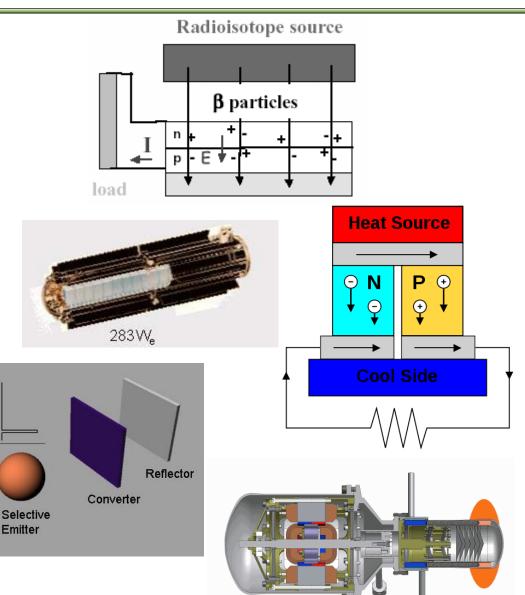
|                                       | Energy Density |
|---------------------------------------|----------------|
|                                       | (MJ/kg)        |
| <sup>2</sup> H- <sup>3</sup> H fusion | 337,000,000    |
| <sup>235</sup> U fission              | 88,250,000     |
| <sup>238</sup> Pu decay               | 2,230,000      |
| LH <sub>2</sub> *                     | 143            |
| Methane*                              | 55.6           |
| Gasoline*                             | 46.4           |
| Ethanol*                              | 30             |
| Coal*                                 | 14 – 19        |
| Wood*                                 | 6              |
| TNT                                   | 4.6            |
| Li ion battery                        | 0.5 – 2.7      |
| H fuel cell                           | 1.6            |
| Flywheel                              | 0.5            |
| NiMh battery                          | 0.22           |
| NiCd battery                          | 0.14 - 0.22    |
| Lead acid battery                     | 0.09 - 0.11    |
| Ultra capacitor                       | 0.02           |
| Super capacitor                       | 0.01           |
| Capacitor                             | 0.002          |
| 100 m dam                             | 0.001          |

Science



\*excludes oxidizer




Office of Benefits of radioisotope power sources: Science Long life

|                   | Half-Life |
|-------------------|-----------|
| Nuclide           | (y)       |
| <sup>210</sup> Po | 0.38      |
| <sup>147</sup> Pm | 2.6       |
| <sup>60</sup> Co  | 5.3       |
| <sup>3</sup> Н    | 12.3      |
| <sup>90</sup> Sr  | 28.8      |
| <sup>238</sup> Pu | 87.7      |
| <sup>63</sup> Ni  | 101.2     |
| <sup>241</sup> Am | 432.6     |



# f Examples of Radioisotope Power Conversion Methods

- Alpha/betavoltaic
  - Charged particles passing through a semiconductor create electron-hole pairs to produce electricity
- Thermal Electric
  - Seebeck Effect Conversion of temperature differences to electricity
- Thermophotovoltaic
  - Radiant heat causes emitter to emit photons that are converted to electricity by a photovoltaic cell
- Mechanical
  - Stirling engine Conversion of heat energy to mechanical work





## **Examples of Radioisotope Power Sources Applications of Interest**

battery

Nano Tritium<sup>TM</sup>

H3, 225 milliCuries

Model# P100

Support

**RTG Mounting** 

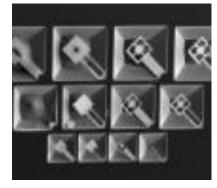
Flange

Multi-Foil

Insulation

- Remote sensors
- Implantable medical devices
- Power for applications where logistics of battery replacement are difficult

**GPHS-RTG** Active Cooling System Aluminum Outer (ACS) Manifold Shell Assembly **Cooling Tubes** Pressure Heat Source General Purpose Gas Managemen **Relief** Device Heat Source (GPHS Assembly


Silicon-Germanium

(Si-Ge) Unicouple

Midspan Heat

Source Support

Microscale devices





| Design Requirement         | Isotope/System Considerations      |  |  |  |
|----------------------------|------------------------------------|--|--|--|
| Mission Duration           | Half-life                          |  |  |  |
| Power Requirement          | Power/Energy Density               |  |  |  |
| Continuous or Intermittent | Combine with Energy Storage        |  |  |  |
| Size                       | Power/Energy Density               |  |  |  |
| Radiation Dose             | Decay Emissions/Shielding          |  |  |  |
| Application/Use of Power   | Licensing of Facilities/Possession |  |  |  |
| Source                     | Nuclear Regulatory Commission      |  |  |  |
|                            | Transportation                     |  |  |  |
|                            | Dept. of Transportation            |  |  |  |
|                            | Disposal                           |  |  |  |
|                            | Nuclear Regulatory Commission      |  |  |  |

### **POLITICS AND TERRORISM**



### Isotope Production Cost Drivers and Availability

## **Isotopes are not cheap!**

- Reactor and Accelerator Production
  - Target Material
  - Target Fabrication
  - Target Irradiation
  - Target Processing/Isotope Purification
  - Waste Disposal
- Legacy Isotopes
  - Long-lived Isotopes Available from Historic Production
    - E.g., strontium-90
  - Fission Products from Reactor Fuel Reprocessing
    - Fuel reprocessing not performed in the United States
    - "Piggy-back" on nuclear waste disposal







#### **Isotope Selection**

|                                              | 58                                   |                                                 | 60               |                           | 62                                     |                                                       | 64                             |                                               | 66                                               |                                         |
|----------------------------------------------|--------------------------------------|-------------------------------------------------|------------------|---------------------------|----------------------------------------|-------------------------------------------------------|--------------------------------|-----------------------------------------------|--------------------------------------------------|-----------------------------------------|
| 1014 14054<br>111 1422                       | Frank price                          | 1.1113.<br>1.1113.                              | -96.<br>         | Part Part                 | In print                               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                 | - 100 K                        | neutron-ricl                                  |                                                  |                                         |
| Ag104 1*                                     | - HH+                                | **************************************          | Ag107            | Ag108                     | Ag109 V-                               | Agi150<br>Jackie Pidan                                | Ag111                          | Agt12ici<br>2016                              | Ag113                                            | Ag114                                   |
| 1100                                         | 0, 28.4<br>200 Million               | Sulfame.                                        | 1,119<br>1079544 | 1.100 M                   | 6) 128-4 70)<br>(3 - 427)<br>105 80308 | n, 26, 66<br>Millionald                               | ny (20 + 22) IN<br>111 general | Vin Street                                    | n=100 + 202<br>(* + 801)<br>(* 1000000           | -1222, 1252<br>111439, 17144            |
| Cd105 ==                                     | Cd106                                | C6107 1**                                       | Cd108            | Cd109 **                  | Cd110<br>1249                          | HLS IN TERM                                           | Cd112<br>34.13                 | 10-00113.00                                   | Cd154<br>28.73                                   | Cd115                                   |
| ENG.                                         | 1384<br>1011<br>1011<br>1011<br>1011 | Calls . Aller                                   | FREE             | A 3 MA                    | 1011-                                  | 2 - 104 E 12 100                                      | 101011200                      | 1001 (1000)<br>(1001) (1000)<br>(1000) (1000) | ATTACASE AND | 1000 + 3.27                             |
| 11 In 106 (*                                 | 61 5 30.4 m                          | ** \$108 **<br>#.a. 17m                         | 13= 43h          | * intig !*                | 1- in 11                               | ** In152 1+<br>2650 1440                              | 10 In113 #*                    |                                               | LANCE SLOT                                       | 10116<br>7051 111                       |
| 410                                          | E NRAJILA                            | - 1000 3, 640,401<br>E 1,881                    | 6.04             | 1423, Miles               | 2+18 + 31                              | 1.100                                                 | roseptal                       | No. 13 Per                                    | (Belling)<br>(Belling)                           | 100 100 100 100 100 100 100 100 100 100 |
| Sn1070 H                                     | Sn108<br>162 m                       | Sn109(21)<br>182.0                              | Sn110            | Sollin<br>Slar<br>A.S. S. | 8n112<br>637                           | Soft3                                                 | Sn114<br>646                   | Sn115 ***                                     | Satt6                                            | 11.60 d T.M                             |
| £48.                                         | 115                                  |                                                 | 1.80             |                           |                                        |                                                       | 1100                           | 2011 A2014                                    | E+N -                                            | 1000 P. # 210                           |
| Consistent.                                  | A C C                                | PAR-                                            | 1082,4201        | - 1211 - 8910 -           | 2 +96.0, 102.4                         | 110H3 M0.K                                            | 1, P*100,5<br>1480 0,          | の語の説                                          |                                                  | 1 409 2 1 1220                          |
| Sb108                                        | 55109001                             | Sb110 **                                        | proton-rich      |                           |                                        | Sb114 1-                                              | Sb115 >*                       | - 50116                                       | 86117                                            | 5.00 h 14 m                             |
| - fnz. R02. 402<br>(412-00 - 8.50<br>- 1.767 | -212-                                | 41                                              | 122.28.44        | (144) (144, 1480)         | 110.1.706.4.<br>200.8./                | 7 /00.4<br>2016. 7 /214<br>10018.<br>10018.<br>10018. | 1.07                           | * 00. 0% INC.                                 |                                                  | -1924 (1944)<br>1927<br>1927            |
| Tel09                                        | Te110                                | Tettion                                         | Test2            | Tel13 a+                  | Tet14                                  | 67m 58m                                               | Te116<br>248 5                 | Te117                                         | To158<br>4.00-0                                  | A89-8 15.01                             |
| 4.117                                        | 243                                  | 11 10 10 40 40 40 40 40 40 40 40 40 40 40 40 40 | 510 -<br>515 -   | (1912)<br>6.81            |                                        | 677                                                   | 647                            | ADL ALL ALL ALL ALL ALL ALL ALL ALL ALL       | 114                                              | AMAZ HARA                               |
| 5.65 +<br>5.41                               | 234                                  | 144                                             | Texasa-          | 425 218<br>Jan Men        | -13-<br>                               | 294<br>(1+4) 1                                        | 2.22 m<br>7.32                 | 13 m 18 m                                     | Mite<br>Sett.                                    | 136 136 H                               |



|    |    | Half-Life<br>(y) | Half-Life<br>(s) | Activity<br>(Bq/g) | Specific<br>Activity<br>(Ci/g) | Particle<br>Energy<br>(MeV) | Intensity | Energy<br>Release<br>(MeV/dis.) | Power<br>Density<br>(W/g) | Material<br>Required<br>(Ci/W) |          |
|----|----|------------------|------------------|--------------------|--------------------------------|-----------------------------|-----------|---------------------------------|---------------------------|--------------------------------|----------|
| Ni | 63 | 100.1            | 3.16E+09         | 2.10E+12           | 57                             | 0.01743                     | 1         | 0.017425                        | 0.006                     | 9682                           | β        |
|    |    |                  |                  |                    |                                |                             |           |                                 |                           |                                |          |
| Co | 60 | 5.27             | 1.66E+08         | 4.18E+13           | 1131                           | 0.09577                     | 0.9988    | 0.09565508                      | 0.64                      |                                | β        |
|    | 60 | 5.27             | 1.66E+08         | 4.18E+13           | 1131                           | 0.6259                      | 0.0012    | 0.00075108                      | 0.01                      |                                | β        |
|    | 60 | 5.27             | 1.66E+08         | 4.18E+13           | 1131                           | 1.173                       | 0.9985    | 1.1712405                       | 7.85                      |                                | γ        |
|    | 60 | 5.27             | 1.66E+08         | 4.18E+13           | 1131                           | 1.332                       | 0.9998    | 1.3317336                       | 8.92                      |                                | <u> </u> |
|    | 60 | 5.27             | 1.66E+08         | 4.18E+13           | 1131                           |                             |           |                                 | 17.42                     | 65                             |          |



### DOE Isotope Program Initiatives for Isotopes of Interest for Power Sources

- Strontium-90
  - Legacy material from plutonium production at Hanford
  - Hundreds of Ci available
  - Possible availability of MCi quantities
  - >30 years old (specific activity ~25 Ci/g)
- Nickel-63
  - DOE produces hundreds of Ci per year at high specific activity (>13 Ci/g)
- Americium-241
  - DOE re-established production from plutonium wastes
  - Gram quantities can be available for research
  - Large quantities can be available from industrial consortium established by DOE
- Plutonium-238
  - Small quantities available for research
  - DOE production being established by funding from NASA (managed by DOE-NE)
  - Additional production would require significant investment



- Cobalt-60
  - DOE produces kCi quantities of high specific activity Co-60 (>250 Ci/g)
  - Available from DOE customers that buy and process irradiated targets
- Promethium-147
  - Currently available as fission product from fuel reprocessing in Russia
    - Contains Pm-146 and Pm-148m which can be problematic radiologically
  - DOE developing reactor production using neodymium-146 target
    - Much lower (or no) Pm-146 and Pm-148m content
    - Much more expensive
- Commercially available isotopes
  - H-3 (tritium)
  - Polonium-210



- Power source developers involve people knowledgeable in isotope characteristics and utilization
- Submit requests for desired isotopes through the DOE Isotope Program catalog at <u>www.isotopes.gov</u>
- Sign up for the DOE Isotope Program mailing list at <u>www.isotopes.gov</u> to receive notices of isotope availability and isotope production initiatives
- Workshop to bring together power source developers, isotope producers, and regulatory agencies to inform decisions on isotopes appropriate for power sources