
Pre-Clinical and Clinical Trials Supported by the National Cancer Institute

Frank I. Lin, MD Medical Officer Cancer Imaging Program – DCTD/NCI/NIH 11/9/2016

Outline

- Overview of NCI supported research by mechanism
 - Grants
 - Contracts
 - Cooperative Groups / Consortiums
- Radioisotope use in Grants portfolio
- Contract space
- Future projects
 - NCI Intramural Use

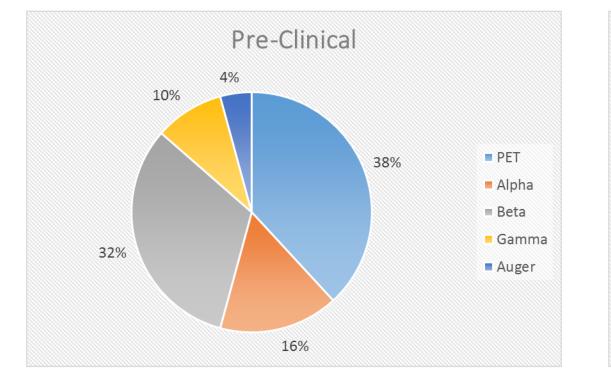
NCI Support Mechanisms Overview

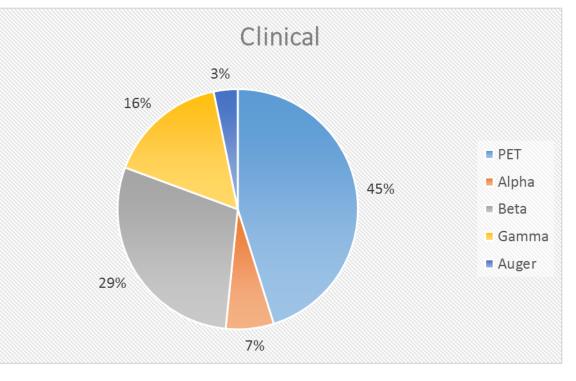
Radioisotope Use in NCI Grants Portfolio

- QVR search of grants
- Institute: NCI
- Funded projects only
- Competing projects only (no renewals)
- Time frame: 2012-2016 (past 5 years)
- Search terms via RCDC (Research, Condition, and Disease Categorization) indexed terms

Grant Portfolio Results

Search Terms	Number of Awards	Total Funding
Radionuclide Therapy or Radioimmunotherapy	30	\$8.1M
Radiopharmaceuticals	58	\$14.5M
Radioisotopes	125	\$33.2M
All 3 above	161	\$42.8M
All 3 above (including non-funded)	1009 applications	\$42.8M
All 3 above (including non-NCI)	307	\$91.1M
All 3 above (including non-NCI and non- funded)	1859 applications	\$91.1M


NCI-Only Funded Grants


- 161 awards for \$42.8M
- Pre-clinical: 107 vs. Clinical: 49 (5 exempt studies)
- Wide range of radio-isotopes used in pre-clinical studies
- Limited variety for human studies

Radio-isotope Use in NCI Grant Portfolio

Isotope	Pre-Clinical	Clinical	Isotope	Pre-Clinical	Clinical
⁶² Cu	0	1	¹⁵³ Sm	1	1
⁶⁴ Cu	5	2	²²³ Ra	1	0
⁸⁶ Y	2	0	^{205/206} Bi	1	0
⁹⁰ Y	11	6	²¹² Bi	3	0
¹⁰³ Pd	1	1	²¹³ Bi	2	0
¹⁷⁷ Lu	11	1	¹¹ C	1	0
⁶⁸ Ga	2	3	²¹¹ At	6	2
¹²³	2	0	³² P	2	0
¹²⁴	4	1	²⁰³ Pb	5	0
¹²⁵	4	1	²¹² Pb	8	0
¹³¹	7	1	²²⁵ Ac	4	0
¹⁶⁶ H	1	0	¹¹¹ In	1	1
⁸⁹ Zr	11	3	¹⁵³ Gd	1	0
^{99m} Tc	2	3			
¹⁸ F	15	4			

Radio-isotope Use by Particle Emission

Portfolio Analysis Caveats

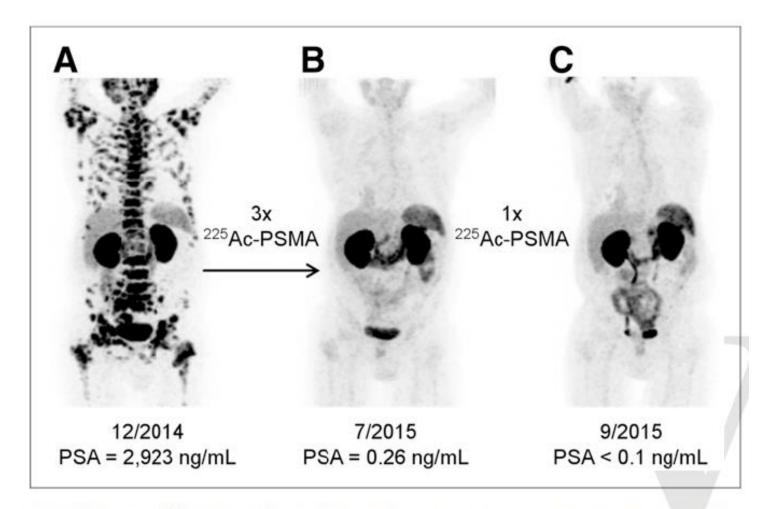
- More focused on radionuclide in therapeutic setting
- If use "PET Imaging" as search term:
 - 303 awards for \$84.5M
 - Have a lot more ⁸⁹Zr, ¹⁸F, ⁶⁸Ga
 - Some more ⁶⁴Cu, ¹¹C

Radio-isotope Use in NCI SBIR Contracts

- Agents that have been identified as high scientific impact and chosen for significant funding with commercialization as goal
- 14 funded projects: \$300k for first 9 months, then \$2M for 2 years

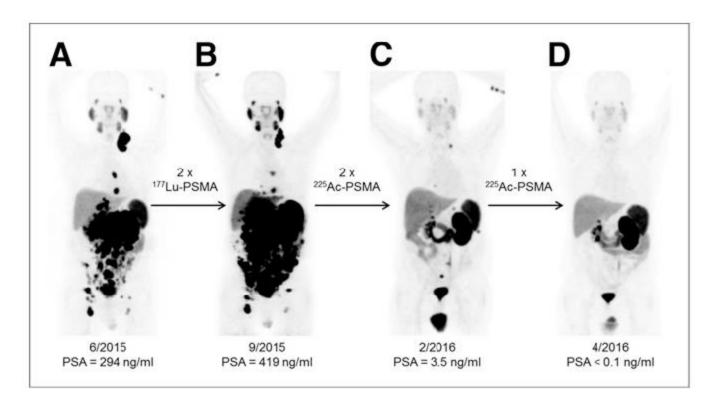
Isotope	Projects	Isotope	Projects
²⁰³ Pb/ ²¹² Pb	2	⁶⁸ Ga/ ¹⁷⁷ Lu	1
¹⁸ F	2	⁸⁹ Zr	2
¹²⁴	1	²²² Ac/ ²²⁵ Ac	1
131	3	⁸⁶ Y/ ⁹⁰ Y	1

Alpha particle RNT with PSMA Agents


TABLE 1

Overview of Pretreatments

Patient A	Patient B
Leuprorelin	Radical prostatectomy
Zoledronate	Radiotherapy of lymph node metastasis
Docetaxel (50 cycles)	Leuprorelin
Carmustine/epirubicin in hyperthermia	Leuprorelin plus bicalutamide, 150 mg/d
Abiraterone	Docetaxel (11 cycles)
Enzalutamide	Cabazitaxel (10 cycles)
²²³ Ra (6 cycles)	Abiraterone
Abiraterone reexposition	Enzalutamide (not tolerated)
Estramustine	


Kratochwil et al. J Nucl Med 2016; 57:1-4.

Patient A

FIGURE 1. ⁶⁸Ga-PSMA-11 PET/CT scans of patient A. Pretherapeutic tumor spread (A), restaging 2 mo after third cycle of ²²⁵Ac-PSMA-617 (B), and restaging 2 mo after one additional consolidation therapy (C).

Patient B

FIGURE 3. ⁶⁸Ga-PSMA-11 PET/CT scans of patient B. In comparison to initial tumor spread (A), restaging after 2 cycles of β -emitting ¹⁷⁷Lu-PSMA-617 presented progression (B). In contrast, restaging after second (C) and third (D) cycles of α -emitting ²²⁵Ac-PSMA-617 presented impressive response.

Conclusions

- Wide variety of radio-isotopes being used
- PET agents are the most studied; β-emitters second
- Shift towards α-emitters seen in pre-clinical already -> likely to carry over to clinical studies in the future