

3rd Workshop on Isotope Federal Supply and Demand

Global Concerns about Isotope Supply Chains

03 November 2014

Current Status of Radioisotope Uses and Trends

Joao Alberto Osso Junior

Head, Radioisotope Products and Radiation Technology Section & Meera Venkatesh Director, Division of Physical & Chemical Sciences

Contents

- IAEA structure and RPRT programmes
- Radioisotopes for industrial process control and safety
- Co-60 irradiators for different applications
- Radioisotopes for Medicine
- Mo-99 supply crisis and the role of IAEA

Division of Physical and Chemical Sciences

Nuclear Physics

Accelerator applications Nuclear Fusion Research Reactor Applications Nuclear Instrumentation

Radioisotope Products & Radiation Technology

Radiation Technology & Radiotracers

Radiopharmaceuticals – Development, Demonstration & Deployment

Nuclear Data

Data Bases Development & Services Nuclear Data Atomic & Molecular Data

Isotope Hydrology

Hydrology Laboratory Water resources management

Role of the IAEA & Areas of involvement

Mandate:

The Agency shall seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.

 Promote beneficial uses of radioisotopes and radiation technologies and assist MSs in these areas

Section Radioisotope Production and Radiation Technology

<u>Objectives</u>

To contribute to improved healthcare and facilitate safe and clean industrial development in MS through the use of radioisotopes and radiation technology and to strengthen national capabilities for producing radioisotope products and utilizing radiation technology for socio-economic development

Section Radioisotope Production and Radiation Technology

Rationale

- Radioisotope products and radiation technology are the basic tools for nuclear applications in medicine, industry, agriculture, environment and allied research
- Demands for Agency's support by Member States in developing local capability and infrastructure
- Need to foster emerging prospects for further applications
- Large number of on-going TC Projects (150).

Industrial Applications of Radiation Technology

- Radiotracers for process optimization
- Radiation based NDT for industrial applications trouble shooting; process optimization
- Radiation Technology for clean environment
- Radiation Technology for novel materials
 - Nano materials for use in drug delivery (radiopharmaceuticals)
 - Bio-degradable, natural polymer based food packaging materials

- Enhance quality, productivity, reliability and safety
- Improve efficiency (Save Energy, Time & Money)
- Make worker's performance easier
- Reduce industrial pollution

Radiation Processing Applications for Protection of the Environment

Flue gas Purification

Wastewater Treatment

Sewage Sludge Hygienization

Radioisotopes and Radiopharmaceuticals

- Availing Medical Radioisotopes (Mo-99/Tc-99m; Ge-68/Ga-68; Y-90; Cu-64 etc.)
- Development of Radiopharmaceuticals (Lu-177-anti-CD20)
- Establishing production facilities GMP/ regulatory compliant; training
- Updating radiopharmaceutical monographs for the International Pharmacopeia – WHO
- Preparation of syllabus for the Radiopharmacy courses in recognized Universities and e-learning modules for education and training in Radiopharmacy

Tracers for water

A

lsotope	^{137m} Ba	^{113m} In	^{99m} Tc	⁸² Br	¹⁹⁸ Au
Half-life	2.6 min	100 min	6.02 hours	1.5 days	2.7 days
Energy (keV)	662	410	140	Approx. 700	410
Activity	1 to 200 mCi 37 to 7400 MBq	1 to 200 mCi 37 to 7400 MBq	1 mCi to 10 Ci 37 MBq to 370 GBq	1 to 200 mCi 37 to 7400 MBq	1 mCi to 9 Ci 37 MBq to 333 GBq
Obtention	Generator ¹³⁷ Cs- ^{137m} Ba	Generator ¹¹³ Sn- ^{113m} In ⁹⁹ Mo- ^{99m} Tc activation		Reactor activation	
Preparation	None	EDTA Complexation	None	None	Complexation

Tracers for liquid organic phase

lsotope	²⁴ Na	⁸² Br	¹⁴⁰ La	⁶⁴ Cu	⁶⁵ Ni
Half-life	2.58 years	1.5 days	1.7 days	12.84 hours	2.56 hours
Energy (keV)	1280	Approx. 700	330 to 1600	1340	370 to 1490
Chemical form	Naphtenate Salicylate	Bromobenzene	Naphtenate	Naphtenate	Stearate Oxalate
lsotope	¹⁹⁸ Au	131	⁵⁶ Mn	^{113m} ln	⁶⁰ Co
Half-life	2.7 days	8.05 days	4.58 hours	100 min	5.24 years
Energy (keV)	410	284 to 640	840 to 2110	390	1170 and 1330
Chemical form	Sodium cyanide solution	I-Kerosene lodobenzene	Naphtenate	Oleate Stearate	Naphtenate

Tracers for gas phase

Isotope	⁴¹ Ar	⁷⁶ As	⁸² Br	⁸⁵ Kr	⁷⁹ Kr	¹³³ Xe	³⁵ S
Half-life	110 min	26.5 h	36 h	10.6 a	34 h	5.27 d	87 d
Energy (keV)	1370	550 to 2020	550 to 1320	β ⁻ 540 to 700	136 to 830	β ⁻ 30 to 340	β 167
Chemical form	Gas	AsH ₃	CH₃Br	Gas	Gas	Gas	H_2S

Tracers for sand particles

lsotope	¹⁴⁰ La	¹⁹⁸ Au	⁵² Mn	¹⁴⁷ Nd	¹⁹² lr
Half-life	1.7 days	2.7 days	5.7 days	11 days	74 days
Energy (keV)	330 to 1600	410	730 to 1460	Complex spectrum	296 to 468
Activity	< 0.5 Ci	< 9 Ci	< 0.5 Ci	< 3 Ci	< 1 Ci
	< 18 GBq	< 333 GBq	< 18 GBq	< 111 GBq	< 37 GBq
Obtention	Reactor activation	Reactor activation	Reactor activation	Reactor activation	Reactor activation
Preparation	Glass powder	Glass powder	Glass powder	Glass powder	Glass powder
			45		

Tracers for mud/sludge particles

Isotope	^{113m} in	^{99m} Tc	¹⁹⁸ Au	⁵¹ Cr	¹⁷⁵⁺¹⁸¹ Hf	¹⁶⁰ Tb	⁴⁶ Sc
Half-life	100 min	6.02 hours	2.7 days	27 days	45 days	73 days	84 days
Energy (keV)	390	140	410	320	Complex spectrum	Complex spectrum	900 and 1100
Activity	< 200 mCi < 7.40 GBq	< 10 Ci < 370 GBq	< 9 Ci < 333GBq	< 20 Ci < 740 GBq	< 1 Ci < 37 GBq	< 1 Ci < 37 GBq	< 9 Ci < 333 GBq
Obtention	Generator ¹¹³ Sn– ^{113m} In	Generator ⁹⁹ Mo- ^{99m} Tc	Reactor activation	Reactor activation	Reactor activation	Reactor activation	Reactor activation
Preparation	None	Particles in reducing medium	Chloride solution HAuCl₄⁻	Chloride solution	Chloride solution	Chloride solution	Chloride solution

Sealed sources for gauges

Isotope	⁶⁰ Co	¹³⁷ Cs	²⁴¹ Am	²⁴¹ Am-Be	²⁵² Cf
Half-life	5.271 years	30.1 years	432 years	432 years	2.6 years
Energy	1.17 MeV 1.33 Mev	662 keV	60 keV	Neutrons 2 – 10 MeV	Neutrons 2 MeV
Activity	< 200 mCi < 7.4 GBq	< 200 mCi < 7.4 GBq	< 1 Ci < 37 GBq	< 10 Ci < 370 GBq	

Sealed sources for NDT

	Isotope	⁶⁰ Co	⁷⁵ Se	¹⁹² lr
	Half-life	5.271 years	120 days	74 days
	Energy	1.17 MeV 1.33 MeV	120 to 400 keV	296 to 468 keV
	Activity	< 50 Ci < 1850 GBq	< 100 Ci < 3700 GBq	< 100 Ci < 3700 GBq
IAE	Δ		17	

Main issues

- Reactor time for irradiation
- Some generators have been discontinued
- Price of the generators

Cobalt-60 irradiators for different applications

⁵⁹ Co(n	,γ) ⁶⁰ Co
--------------------	----------------------

S.No.	Туре	Typical Cobalt-60 Source strength (Curie)	Application area	
1	Gamma Cell with irradiation volume of 1-5 litres	1,000-20,000	R&D at laboratory scale Blood irradiation Irradiation of seeds etc. for mutation breeding	
2	Panoramic Batch Irradiators	30,000-100,000	Pilot scale studies Semi-commercial operations for sterilization of medical products Food irradiation requiring low dose irradiation such as irradiation of onions, potatoes, mangoes etc.	
3	Commercial Gamma radiation plants	100,000-5,000,000	Sterilization of medical products Food irradiation requiring high doses such as hygienization of spices	Hi I Gran I pres re
	Unloading	Conveyor		

Control station

19

ΙΑΕΑ

Loading

100 C.

Development of gamma irradiation

- First commercial plant built in early 1960s
- Over 800 million Ci of Co-60 shipped over last 50 years
- Today about 300 million Ci of Co-60 worldwide
- Ca. 145 million Ci of Co-60 installed in about 50 gamma facilities in the US
- About 12 million m³ of single use medical devices sterilized by radiation annually.

Cobalt-60 irradiators for different applications

133 facilities in 41 countries in 1985

MICROTROL

Issues regarding supply of Cobalt-60

- > 200 commercial irradiation facilities in the world (medical sterilization and food irradiation) > 260 M Ci.
- Growth rate of 5-10% and the decay rate of 12% per annum: annual demand of Co-60 is about 50 M Ci.
- The current supply of Co-60 meets the demand and IAEA has been able to procure and ensure the supply for some Member States, though the transportation across the continents poses a few challenges
- Co-60 is produced in CANDU and RBMK power reactors in Canada, Russia, China, Argentina and India. CANDU reactors have a 25-year life span and much of the installed reactors will reach this milestone over the next decade.
- Many CANDUs are being refurbished extending their life by an additional 25-30 years.
- Canada, major distributor of Co-60 using multiple reactor, may face distribution issues in the near future.

Radioisotopes for Medicine

Teletherapy

Isotope	⁶⁰ Co	¹³⁷ Cs
Half-life	5.271 years	30.1 years
Energy	1.17 MeV 1.33 MeV	662 keV
Activity	< 13,000 Ci < 500 TBq	
Production	⁵⁹ Co(n,γ) ⁶⁰ Co	Fission product

Radioisotopes for Medicine

Braquitherapy

Isotope	¹⁹² lr	125	¹⁰³ Pd
Half-life	74 days	60 days	74 days
Photon average energy	380 keV	28 keV	21 keV
Production	¹⁹¹ lr(n,γ) ¹⁹² lr	¹²⁴ Xe(n, γ) ¹²⁵ Xe ¹²⁵ Xe \rightarrow ¹²⁵ I Enriched target	¹⁰² Pd(n,γ) ¹⁰³ Pd Enriched target ¹⁰³ Rh(p,n) ¹⁰³ Pd

Brachytherapy classification with respect to dose rate:

Low dose rate (LDR) (0.4 - 2 Gy/h)

Medium dose rate (MDR) (2 – 12 Gy/h)

High dose rate (HDR)
24
(> 12 Gy/h) < 10 Ci/pellet</p>

Radioisotopes for Nuclear Medicine -Diagnostic

PET (Cyclotron)

Isotope	¹¹ C	¹³ N	¹⁵ O	¹⁸ F
Half-life	20 min	10 min	2 min	110 min
Production	¹⁴ N(p,α) ¹¹ C	¹⁶ Ο(p,α) ¹³ Ν	¹⁵ N(p,n) ¹⁵ O	¹⁸ O(p,n) ¹⁸ F enriched

Isotope	⁶⁴ Cu	⁶⁸ Ga	⁸² Rb	⁸⁹ Zr
Half-life	12.7 h	68 min	1.25 min	78.4 h
Production	⁶⁴ Ni(p,n) ⁶⁴ Cu enriched	Generator (⁶⁸ Ge- ⁶⁸ Ga) ^{nat} Ga(p,xn) ⁶⁸ Ge High energy Cyclotron	Generator (⁸² Sr- ⁸² Rb) ⁸⁵ Rb(p,4n) ⁸² Sr High energy Cyclotron	⁸⁹ Y(p,n) ⁸⁹ Zr

Radioisotopes for Nuclear Medicine -Diagnostic

SPECT

Isotope	⁶⁷ Ga	^{99m} Tc	¹¹¹ In	123	²⁰¹ TI
Half-life	78.3 h	6 h	67.2 h	13 h	73 h
Production	⁶⁸ Zn(p,2n) ⁶⁷ Ga enriched	Generator (⁹⁹ Mo- ^{99m} Tc)	¹¹² Cd(p,2n) ¹¹¹ In enriched	124 Xe(p,2n) 123 Cs 123 Cs \rightarrow 123 Xe \rightarrow 123 I enriched	²⁰³ TI(p,3n) ²⁰¹ Pb ²⁰¹ Pb→ ²⁰¹ TI enriched

Radioisotopes for Nuclear Medicine -Therapy

B⁻ emitters

Isotope	³² P	⁹⁰ Y	¹⁵³ Sm	131	¹⁷⁷ Lu
Half-life	14.3 d	2.7 d	46.3 h	8 d	6.7 d
Production	³² S(n,p) ³² P	Generator (⁹⁰ Sr- ⁹⁰ Y)	¹⁵² Sm(n,γ) ¹⁵³ Sm	¹³⁰ Te(n,γ) ¹³¹ Te ¹³¹ Te→ ¹³¹ I	¹⁷⁶ Lu(n,γ) ¹⁷⁷ Lu
		⁸⁹ Υ(n,γ) ⁹⁰ Υ	enriched	Fission product	¹⁷⁶ Yb(n,γ) ¹⁷⁷ Yb ¹⁷⁷ Yb→ ¹⁷⁷ Lu
		Fission product			enriched

Radioisotopes for Nuclear Medicine -Therapy

α emitters

Isotope	Half-life	Production	Production
²²⁵ Ac	10 d	²³³ U decay chain ²²⁹ Th(α decay)	²²⁶ Ra(p,2n) ²²⁵ Ac
²²⁴ Ra	3.66 d	²²⁸ Th(α decay)	
²²³ Ra	11.4 d	²²⁷ Ac decay chain ²²⁷ Th(α decay)	²²⁶ Ra(n,γ) ²²⁷ Ac
²¹³ Bi	45.6 min	²²⁷ Ac decay chain	Ac-Bi generator
²¹² Bi	60 min	²²⁷ Ac decay chain	Ra-Bi/Pb generator
²¹¹ At	7.2 h		²⁰⁹ Bi(a,2n) ²¹¹ At

Radioisotopes for Nuclear Medicine -Therapy

Issues

□ I-131 supply could be affected by Mo-99 crisis □ The only alpha emitter radiopharmaceutical, Xofigo, had its distribution temporarily suspended due to a chemical processing issue Enriched targets of Lu-176 and/or Yb-176 \Box Potential new β^{-} emitters: Cu-67, Re-186, Sc-47 Theranostic

Demand of Mo-99

- 10,000 6-day Ci per week (world)
- 5,000 6-day Ci per week (USA)

Fission

Supply of Mo-99 crisis

- Supply problems since 2007
- Main shortage in 2009
- Ageing of Reactors
- 2014: latest problem NTP
- 2016: Nordion will cease production

IAEA Priorities for ⁹⁹Mo

HEU Minimization

Transition of ⁹⁹Mo production away from the use of highly enriched uranium (HEU)

Stability of Supply

Diversification of supply and movement to full cost recovery to ensure the global demand is met

Role of IAEA

- Stability of supply of Mo-99 in MSs
- Indigenous production using non-HEU targets:
 ²³⁵U(n,f)⁹⁹Mo reaction
 ⁹⁸Mo(n,γ)⁹⁹Mo reaction
 ¹⁰⁰Mo(p,2n)^{99m}Tc reaction Cyclotron
- Regulatory aspects
- New alternatives to Tc-99m
- To assist MSs to improve operational performance / reliability of an ageing fleet of RRs
- Efforts from NEFW and RPRT sections

Small-scale, non-HEU ⁹⁹Mo production

- TC (INT) Project started in 2013
- Aimed at assisting small-scale, national-level producers in setting up their production capability;
 - NOT aimed at creating commercial producers
- Will rely on LEU fission or n,gamma-based production
- Open to any IAEA Member States wishing to receive advice and assistance
- Production infrastructure fact-finding missions (experts) were completed to Mexico, Morocco, Peru, Poland and Romania. Similar missions were conducted in Egypt (2010) and Malaysia (2011)

Role of RPRT

- CRP on the production of Tc-99m by cyclotron (3rd RCM 2015)
- CT on The Preparation of Monograph of Tc-99m Produced by Cyclotron (2015)
- TM on New Ways of Producing Tc-99m and Tc-99m Generators (2015)
- New CRP on "Sharing and Developing Protocols to Further Minimize Radioactive Gaseous Releases to the Environment in the Manufacture of Medical Radioisotopes, as Good Manufacturing Practice"
- Support to TC projects

Production of ^{99m}Tc in Cyclotron

IAEA CRP - Accelerator-based Alternatives to Non-HEU production of Mo-99/Tc-99m (2011-2015): ¹⁰⁰Mo(p,x)

A. Celler, X. Hou, F. Bénard, T. Ruth, Phys. Med. Biol. 2011, 56, 5469

37

Role of RPRT

- Alternatives for Tc-99m: Tl-201, Rb-82, F-18-Fluoride, Ga-68, Cu-64
- CRPs on:
 - F-18 radiopharmaceuticals
 - Ga-68 radiopharmaceuticals
 - Production of Cu-64 and I-124

Important Issue for Mo-99

- Promising alternatives for production of Mo-99/Tc-99m use enriched Mo-98 or Mo-100 targets
- Only one supplier in the world

THANK YOU FOR YOUR KIND ATTENTION!

