

Critical & Strategic Mineral Supply Chains

3rd Workshop on Isotope Federal Supply and Demand

Dr. Steven M. Fortier, Director National Minerals Information Center United States Geological Survey

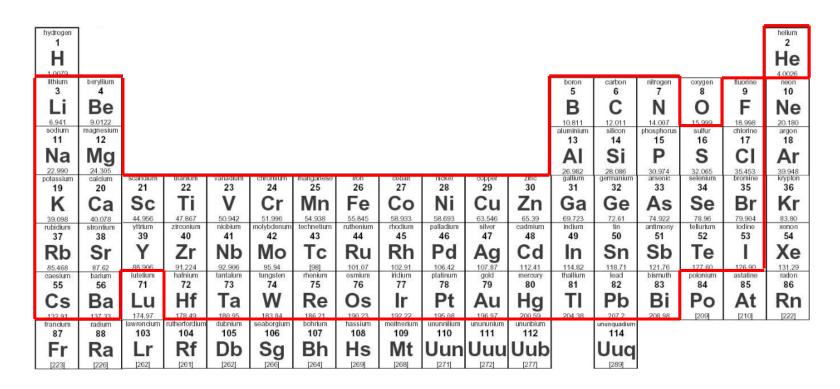
> Rockville, Maryland November 2014

National Minerals Information Center

Mission

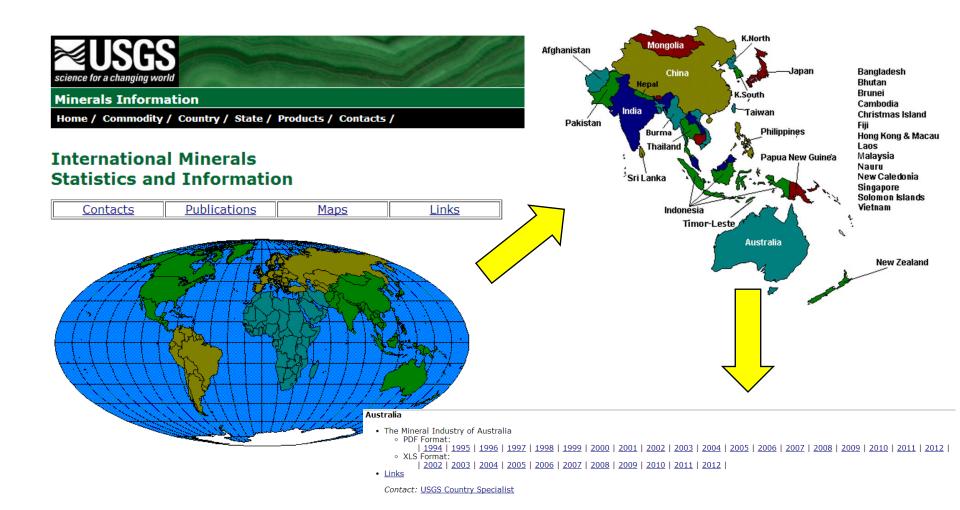
To collect, analyze, and disseminate information on the domestic and international supply of and demand for minerals and materials essential to the U.S. economy and national security.

Goal


Provide decision makers with the information required to ensure that the U.S. has an adequate supply of minerals and materials to meet it's needs, at an acceptable cost with regard to environmental, energy, and economic

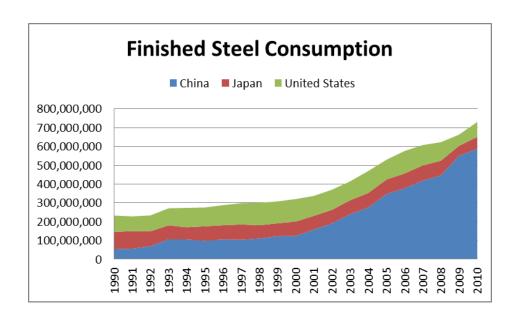
2012 Minerals Yearbook

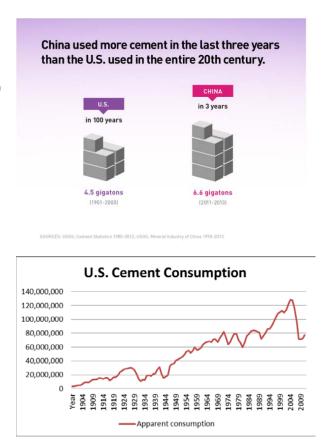
Mineral Commodities Coverage: Broad Scope


*Lanthanide series

* * Actinide series

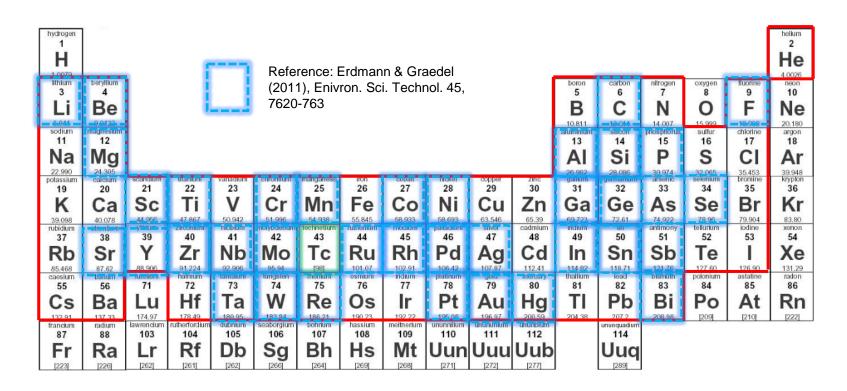
lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terblum 65	dysprosium 66	holmium 67	erblum 68	thulium 69	ytterbium 70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]


Global Coverage: >100 Countries



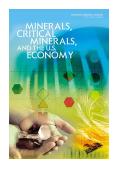
Global Demand for Mineral Commodities

- Historically Unprecedented
- Growing Rapidly
- Dominated by Development in China
- Continued Demand Growth Anticipated for ROW
- 2.5 3B Increase in Global "Middle Class" Population by 2030

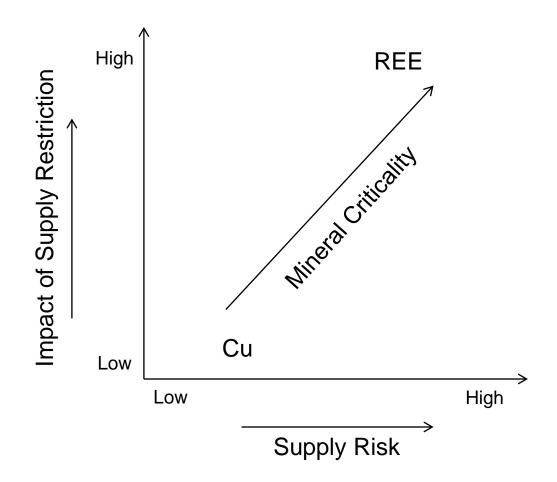


Source: USGS Historical Data Series

"Critical Minerals": Depends on your definition!



* * Actinide series


	lanthanum 57	cerium 58	raseogymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terblum 65	dysprosium 66	holmium 67	erbium 68	thulum 69	ytterbium 70
	La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb:
ŀ	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
L	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Criticality Matrix

Reference: Minerals, Critical Minerals, and the U.S. Economy National Academy of Sciences, 2008

Some Factors Impacting Criticality

Vulnerability	Market share					
	Impact on revenues					
Dimension	Substitution options					
	Pricing power					
	Gross Value Added					
	National Security					
Supply Risk	Absolute abundance					
Dimension	Source country concentration					
Billionolon	Specific country risk factors (political risk, governance)					
	Company Concentration					
	Physical supply restrictions (wars, natural disasters)					
Cross-	Emerging technologies					
Cutting	Recycling					
Issues	Environmental issues					
	Time Horizons					

Time Scale – Market Response to Changes in Availability / Production Shortfalls

Duration	Years	Constraints	Recourse
Short	0-3	Existing production capacity	Inventories / underutilized capacity
Medium	3-10	Existing technology / known resources	Substitution / higher cost resources
Long	>10	Technical development / undiscovered resources	Investment in exploration / mine development / process development

New Mine Development

- Costs
- Permitting
- Environmental
- Social / Political

0 years

Stages of Mineral Exploration & Development Aboriginal Affairs and Northern Development Canada

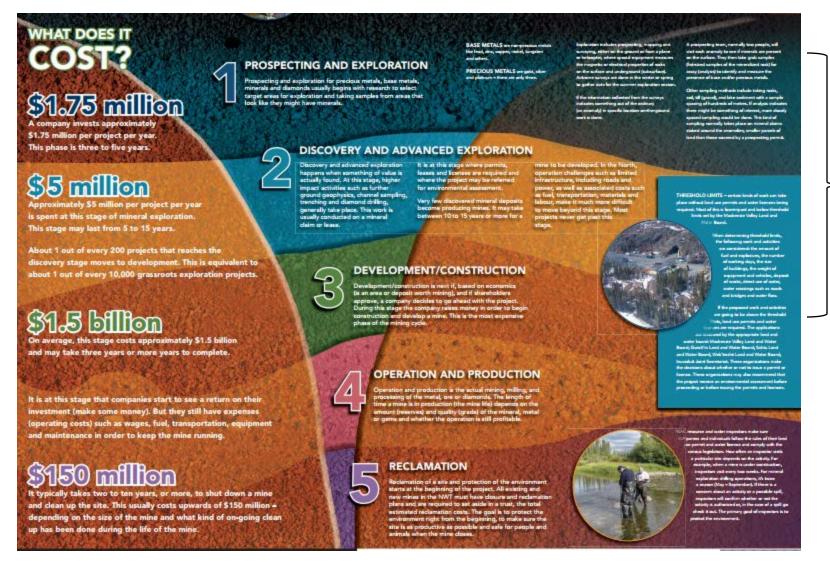
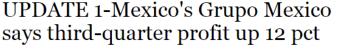


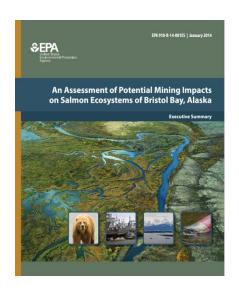
Image used by permission https://www.aadnc-aandc.gc.ca/eng/1100100023711/1100100023713

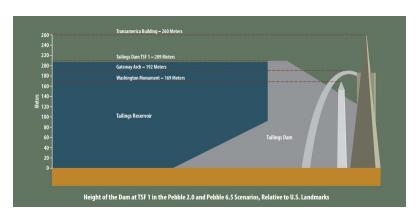
New Mine Development: Risks

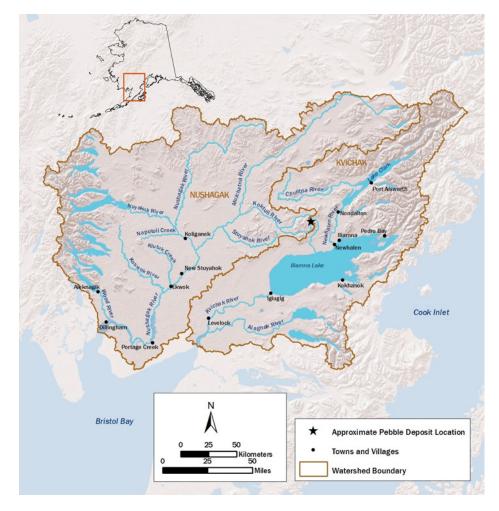
Mount Polley Mine Tailings Pond Breach Sends Toxic Waste Into Waterways (PHOTOS, VIDEO)


The Huffington Post B.C.

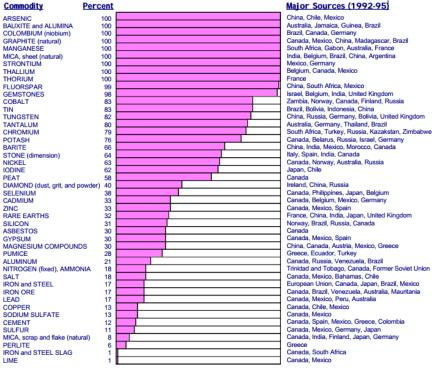
Posted: 08/05/2014 2:06 pm EDT Updated: 08/06/2014 1:59 am EDT





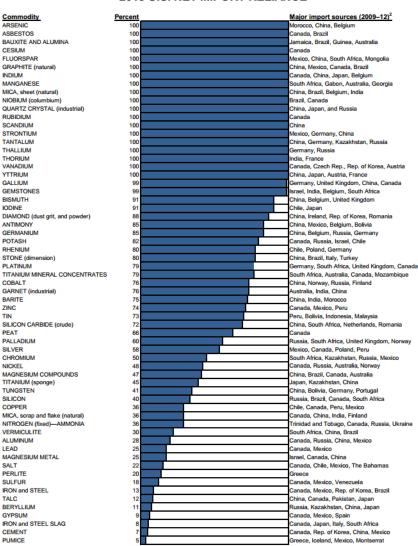


New Mine Development: Environmental Constraints



Increasing Mineral Commodity Import Dependence

1996 U.S. NET IMPORT RELIANCE FOR SELECTED NONFUEL MINERAL MATERIALS



¹ In descending order of importance

Not necessarily indicative of risk!

≈USGS

2013 U.S. NET IMPORT RELIANCE¹

Production concentration of critical raw mineral materials

© European Union, 1995-2014

Supply Concentration

- Geopolitical risks
- Geographic distribution
- Large increases in domestic demand

An Exploration in Mineral Supply Chain Mapping Using Tantalum as an Example

By Yadira Soto-Viruet, W. David Menzie, John F. Papp, and Thomas R. Yager

Open-File Report 2013–1239

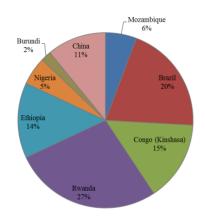


Figure 1. Chart showing percentage of mined tantalum produced in the world in 2011, by country. The amount of contained tantalum in the ore totaled 706 metric tons. Data are from Mobbs (2012), Papp (2013), Tse (2013), and Yaqer (2013a–c).

Tantalum

- Dense, ductile, highly corrosion resistant
- Refractory, transition metal
- Occurrence: Rare (1-2ppm) associated with Nb (Tantalite, Columbite)
- Main Use: tantalum capacitors
- Substitutes: Nb, others; < effective
- Criticality (E&G 2011): (2)6
- U.S Import Dependence: 100%
- Conflict Mineral per Dodd / Frank

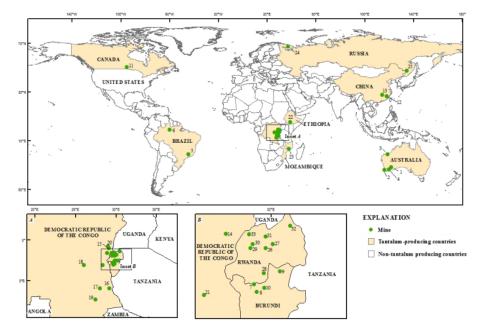
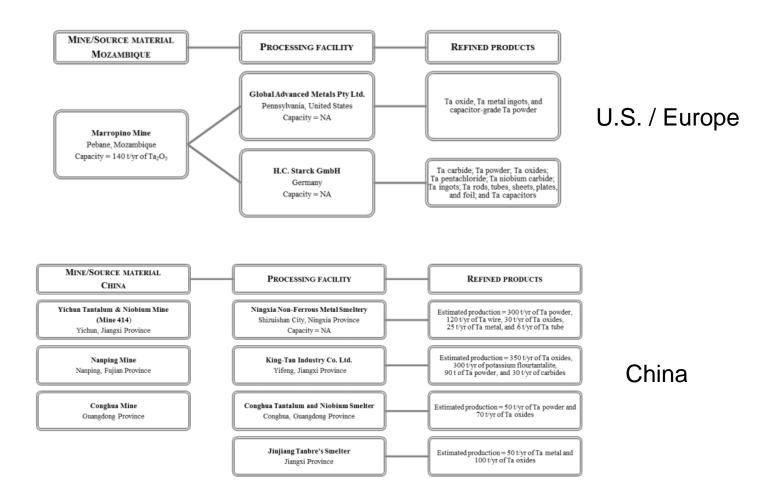
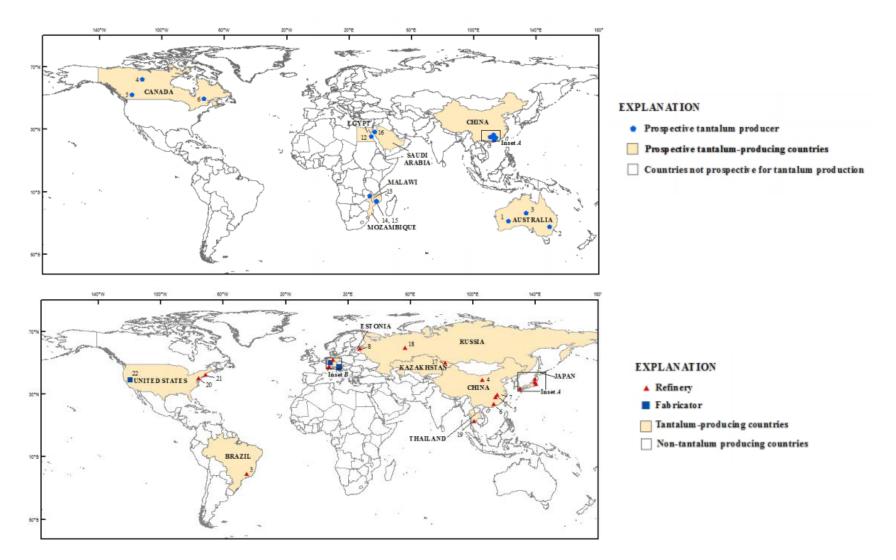
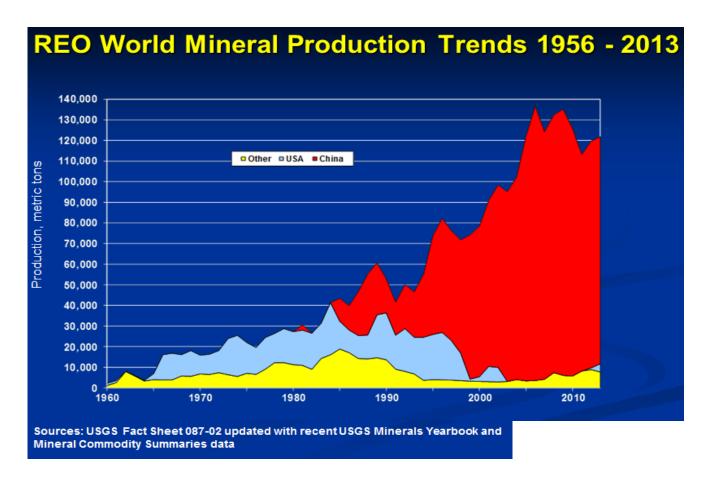


Figure 3. Significant tantalum (Ta) mines in the world. Insets A an B show the location of Ta mines in Burundi, the Democratic Republic of the Congo [Congo (Kinshasa)], and Rwanda in detail. The numbers used to identify locations are keyed to the "ID" in table 1.

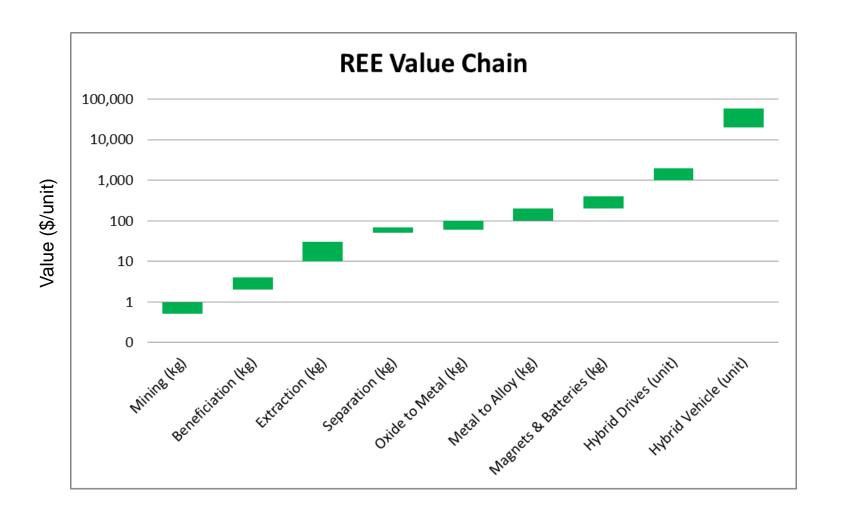

Table 1. Significant tantalum mines.

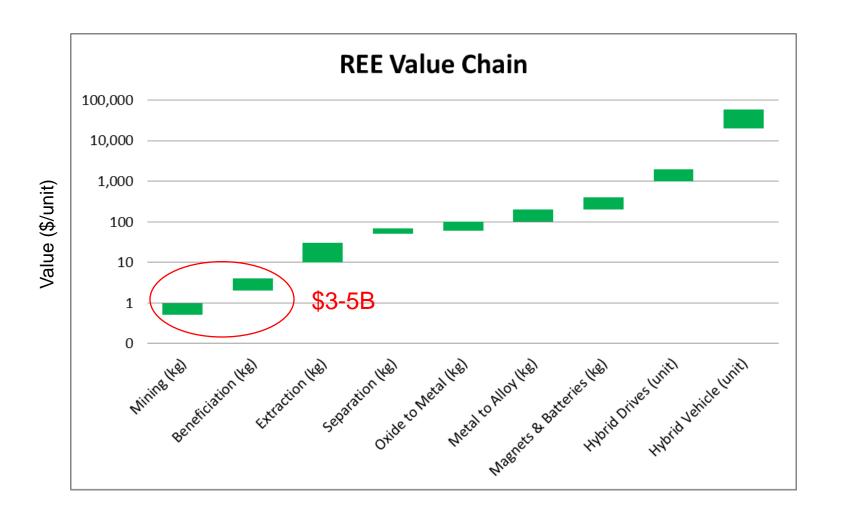
[Mine locations are shown on the map in figure 3. --, not applicable or no data; A, active; CM, care and maintenance; e, estimated; GL, general location; km, kilometer; M, mine; NA, not available; S, surface/open pit; SL, specific location; SU, surface/open pit and underground; Ta₂O₅, tantalum pentoxide; U, underground. Data are from U.S. Geological Survey Minerals Yearbook 2011, vol. III (http://minerals.usgs.gov/minerals/)]


ID	Year	Specific mineral commodity and (or) product	Country	Location description	Location name	Facility type	Mining method	Ownership	Annual capacity (metric tons)	Status	Latitude (decimal degrees)	Longitude (decimal degrees)	Locational accuracy
1	2011	Tantalum, tantalite, Ta ₂ O ₅	Australia	60 km southeast of Kambalda, Western Australia	Bald Hill tantalite mine	M	SU	Altura Mining Ltd.,100%	100 Ta ₂ O ₅	CM	-31.672	121.894	SL
2	2011	Tantalum, tantalite, Ta ₂ O ₅	Australia	250 km from Perth	Greenbushes open pit/underground tantalite-spodumene mine	M	SU	Global Advanced Metals Pty Ltd., 80% and Traxys Tantalum LP (Traxys Group), 20%	550 Ta ₂ O ₅	A	-33.857	116.051	SL
3	2012	Tantalum, tantalite, Ta ₂ O ₅	Australia	2 km north of Ravensthorpe	Mt. Cattlin Mine	M	S	Galaxy Resources Ltd.	25 Ta ₂ O ₅	A	-33.582	120.048	GL
4	2011	Tantalum, tantalite, Ta ₂ O ₅	Australia	100 km southeast of Port Hedland	Wodgina open pit tantalite mine	M	SU	Global Advanced Metals Pty Ltd., 80%, and Traxys Tantalum LP (Traxys Group), 20%	250 Ta ₂ O ₅	CM	-21.184	118.671	SL
5	2011	Tantalum, concentrate	Brazil	Fluminense Mine, Minas Gerais State	Fluminense Mine (Volta Grande Mine)	M	S	Companhia Industrial Fluminense (AMG Advanced Metallurgical Group N.V.)	25 concentrate	A	-21.084	-44.583	SL
6	2011	Tantalum, concentrate	Brazil	Pitinga Mine, Amazonas State	The Pitinga Mine	M	S	Mineração Taboca S.A. (private, 100%)	180 concentrate	A	-0.784	-60.079	SL
7	2012	Niobium (columbium) and tantalum, columbite- tantalite, ore and concentrate	Burundi	Kabarore, Kayanza Province	Mine at Kabarore	M		Comptoir Minier des Exploitations du Burundi S.A. (COMEBU)	6°	A	-2.824	29.581	GL

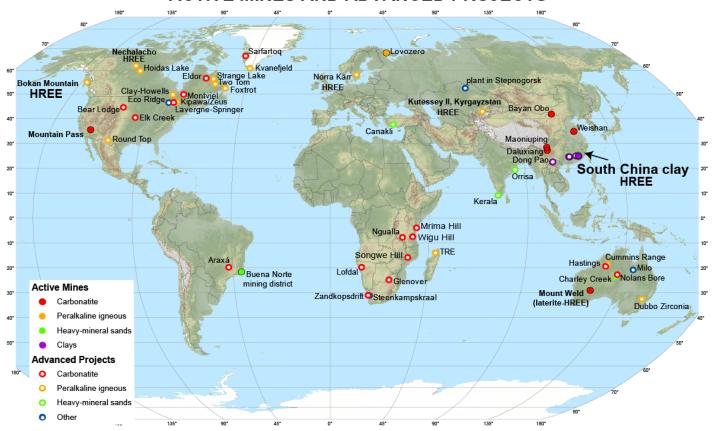


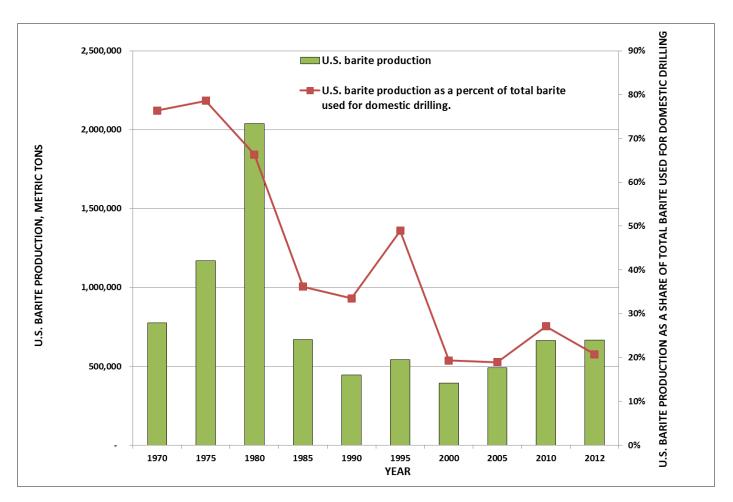
Examples of Supply Chains: (Front End)


Alternative Supply / Downstream Processing



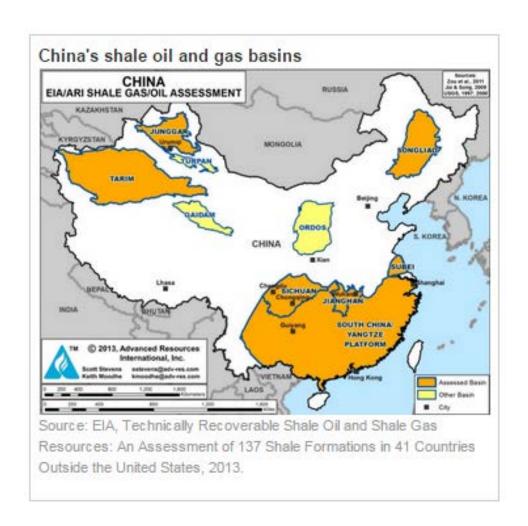
Own the front end of the supply chain + Vertical integration = Own the entire supply chain




GLOBAL DISTRIBUTION OF RARE EARTH ELEMENT RESOURCES ACTIVE MINES AND ADVANCED PROJECTS

REE DISTRIBUTION AND MOBILITY IN RESIDUAL DEPOSITS FORMED ON ALTERED GRANITES OF THE SOUTHEASTERN UNITED STATES. Foley et al (2014).

Comparison of Domestic Barite Production and Percentage Share of Total Barite Used for Drilling in the United States



Barite – A Case Study of Import Reliance on an Essential Material for Oil and Gas Exploration and Development Drilling (Bleiwas & Miller, USGS SIR, 2014)

China Has Very Large Reserves of Shale Oil & Gas

- What happens when (not if) China develops these resources?
- Are we prepared for possible supply disruptions that result from a rapid increase in demand for barite (and other) minerals used for hydrocarbon production?

