U.S. Dependency on Critical Isotopes from Foreign Producers

Mitch Ferren

Associate Director for Business Operations

National Isotope Development Center

3rd Workshop on Isotope Federal Supply and Demand, November 3, 2014

ORNL is managed by UT-Battelle for the US Department of Energy

Outline

- How dependent is the U.S.?
- Historical perspective on how U.S. became dependent
- Specific isotopes imported to the U.S.
- Negative consequences of dependency
- U.S. mitigation of supply disruptions
- Current U.S. production activities

How dependent is the U.S. on foreign suppliers for isotopes?

Cited from a U.S. International Trade Commission 2009 report: For the period 2003 through 2007:

- "There is no domestic source of most of the raw (bulk) radioisotopes used in medical precursors.
- The U.S. currently imports close to 90% by volume of the raw isotopes consumed domestically.
- DOE's world market share was estimated to be less than 5% and its share of major commercially important isotopes was limited.
- Raw isotope imports are transformed by U.S. industry into high-value finished products."

U.S. was Once the Global Leader in Isotope Production and Related Technologies

- Production started in the late 1940s.
- Production expanded rapidly during 1950s and 1960s.
- Wide variety of isotopes produced for research.
- Industrial firms became interested in the commercial applications.
- Commercial markets began to spring up.

3rd Workshop on Isotope Federal Supply and Demand

1st shipment of reactor-produced radioisotope – August 1946

In August 1946, the Laboratory's research director, Eugene Wigner, handed the first shipment of a reactor-produce radiolsotope, a container of carbon-14, to the director of the Barnard Free Skin and Cancer Hospital of St. Louis, Missour

U.S. Invested in Infrastructure to Process Isotopes

- Hot cell facilities were built to process a variety of isotopes.
- Developed staff of chemists and engineers to manage production and processing.
- Developed business operations, packaging and transportation, and logistics.

LIFE Magazine, May 1950: Isotope Circle at Oak Ridge National Laboratory

The number of shipments rapidly expanded from 1946 thru 1950s

3rd Workshop on Isotope Federal Supply and Demand

Industrial isotope markets began to take shape.

 $\mathbf{3}_{7}^{\text{rd}}$ Workshop on Isotope Federal Supply and Demand

U.S. has transitioned from a primary producer to an importer of <u>bulk-quantity isotopes</u>

1946-1985 U.S. production increased and then leveled out during this period.	1986- 2000 Foreign producers take advantage of losses in U.S. production capabilities.	2001 to Present U.S. production is limited and it imports most bulk isotopes used in industry, research, and medicine.
 Cinticem in New York produced isotopes until 1989. National Labs are producing isotopes for research and industry. 	 HFIR reactor at Oak Ridge was shutdown from 1986 to 1990. ORR reactor at Oak Ridge shutdown in 1986 and never restarted. Fall of the Soviet Union in 1991. Russia enters market. Calutrons used for stable isotope enrichment shutdown in 1999. 	 U.S. currently relies on foreign sources for bulk isotopes. U.S. industry refines foreign-supplied bulk isotopes into finished end-use products. Russia, Belgium, and Netherlands are now primary suppliers of bulk isotopes.
^{'d} Workshop on Isotope Federal Supply ar emand	nd INIDCATIONAL ISOTOPE Development center	dustry, and Medicine

U.S. Role has Changed

- U.S. was once the primary producer of isotopes.
- Perfect storm of U.S. facility shutdowns and Russia entering global market diminished the role of the U.S.
- Difficult for U.S. to reenter the market. Can't compete with discount pricing for long-term foreign supply contracts and foreign government subsidies. U.S. companies must rely on foreign suppliers to get their raw materials.
- U.S. is limited to producing bulk products requiring unique capabilities or those in short supply. (Cf-252, Bk-249, Sr-82, high specific activity Se-75 and Co-60

3rd Workshop on Isotope Federal Supply and Demand

Office of Nuclear Physics

DEPARTMENT OF

Iridium-192: Gamma radiography applications

Nondestructive testing for U.S. Infrastructure

- ~800,000 curies of Ir-192 are imported into U.S. annually.
- Enough bulk radioisotope to build ~8000 individual sources.
- Industrial applications include shipbuilding, boiler manufacturing, and oil/gas pipeline inspections.
- U.S. dominated production in this market up until 1986.
- Currently imported primarily from Russia, Belgium, and Netherlands.

Office of Nuclear Physics

Lithium-7: Power Reactor Corrosion Inhibitor

- Commercial Pressurized Power Reactors (PWRs) depend on lithium-7 for reliable operations.
- Lithium-7 is used to buffer reactor coolant and prevent corrosion.
- The U.S. has ~65 operating PWRs generating ~13% of the U.S. electric power needs.
- ~500 kilograms are imported into the U.S. annually.
- The primary supplier is Russia.

Heavy Water (D₂O): Deuterated Compounds for Research and Medicine

- Primarily used as moderator for heavy water nuclear power reactors in foreign countries.
- Excess production from Canada, India, and Argentina has been made available to U.S. commercial markets.
- The U.S. imports ~75 metric tons per year.
- The primary application in the U.S. is nuclear magnetic resonance (NMR) and mass spectroscopy (MS) instrumentation. Powerful analytical tools at major research and medical institutes.
- Also used to label proteins for research and in solvent preparation.
- Prominent radiopharmaceutical companies use deuterated compounds in their drug discovery and development programs.

CANDU Power Reactors (CANada Deuterium Uranium)

Carbon-14: Carbon labeling for research & medicine

- U.S. market is ~60 to 80 curies per year.
- Global market is ~1,500 to 2,500 curies per year.
- Russia is currently the sole supplier of C-14.
- C-14 labeled pharmaceuticals are key to new drug development.
- C-14 labeled new drug candidates offer unsurpassed sensitivity and specificity for FDA required administration, distribution, metabolism, and excretion (ADME) studies.

3rd Workshop on Isotope Federal Supply and Demand

Amercium-241: Oil & gas exploration

- U.S. demand is ~200 grams (~600 curies) per year.
- Global demand is ~650 grams (~2000 curies) per year.
- Primary application is for AmBe neutron sources used in oil and gas exploration.
- Small quantities used for smoke detectors.
- Russia is the sole supplier.

3rd Workshop on Isotope Federal Supply and Demand

Cobalt-60: Gamma surgery and sterilization

Low Specific Activity (LSA) Co-60

- Gamma sterilization facilities throughout the U.S. utilize mega-curie quantities of low specific activity Co-60.
- Sterilize single-use medical supplies and other consumer products.
- All LSA Co-60 is imported from Canada and Russia.

High Specific Activity (HSA) Co-60

- ~500 kilocuries of HSA Co-60 is deployed throughout the U.S. medical therapy devices.
- Used for gamma surgery in treatment of brain tumors.
- Currently all HSA Co-60 is imported from Canada and Russia.

HSA Cobalt-60 Pellets

3rd Workshop on Isotope Federal Supply and Demand

Production Target

Stable Isotopes: Diverse commercial and research applications

Russia and Netherlands produce kilograms of enriched stable isotopes for U.S. markets

Isotope	Application	Amount
Cadmium-112	Production of In-111 for medical imaging & He/Cd lasers	<100 grams per year
Germanium-67	Nuclear physics (Majorana Collaboration)	~100 kilograms for initial experiment
Zinc, depleted in Zn-64	Zn coolant additive is a corrosion inhibitor in nuclear power plants. Depleting in Zn-64 reduces activation products and lowers personnel exposure during maintenance	Hundreds of kilograms per year used by U.S. nuclear power industry
Molybdenum- 98 and -100	Reactor & accelerator production of Mo-99 for medical imaging	Potentially tens of kilograms needed per year to support new production capabilities in U.S.
Strontium-88	Production of Sr-89 for palliative treatment of pain for bone cancer patients	Hundreds of grams per year
Thallium-203	Production of TI-201 for heart imaging.	~600 grams per year

U.S. DEPARTMENT OF

Office of Nuclear Physics

What are the negative consequences of U.S. dependency on foreign isotope suppliers?

- Political issues can potentially disrupt supplies.
- Foreign producers can establish monopolies on certain isotope products resulting in higher prices and unreliable service.
- Potential erosion of U.S. production capabilities and expertise.
- From a security perspective, the U.S. has minimal influence and control over global distribution of bulk isotope quantities.

The Isotope Program is taking steps to mitigate potential disruptions in supply

- Continually assessing various isotope markets.
- Developing and installing a prototype stable isotope separator system to produce research quantities.
- Processing Li-7 to establish a reserve inventory and investigating new lithium separation technologies.
- Assessing feasibility of producing C-14. Includes assessing target design, production rates, and cost.
- Reestablishing high specific activity Co-60 production at the ATR to cover a portion of the market.

U.S. continues to maintain production capacity for unique commercial and research isotope activities

- Californium-252 sources for reactor startups, nuclear fuel quality control, and coal/mineral analyzers.
- Nickel-63 for explosives detection instruments.
- Strontium-82 for heart imaging.
- Ac-225 for cancer treatment research.
- Heavy element production for nuclear physics research.
- Research quantities from legacy inventory of ~245 enriched stable isotopes continue to be distributed by the U.S.

