

Hf

Та

# Isotope Production R&D and Re-establishing Domestic Stable Isotope Production

**Isotope Development for Production and Research DOE Office of Nuclear Physics** 

September 19, 2013



### Nuclear Sciences Advisory Committee on Isotopes

- Charge 2: Develop a long range plan outlining the Nation's future isotope needs
- Recommendations
  - 1. Devise process for enhanced communication and outreach
  - 2. Coordinate production capabilities and research among existing facilities
  - 3. Support research program in base budget to enhance IP capabilities
  - 4. Encourage isotope use in research with reliable supply and affordability
  - 5. Increase robustness and agility of transportation of isotopes
  - 6. Invest in workforce development
  - 7. Construct and operate isotope separator facility
  - 8. Construct and operate a dedicated multiparticle accelerator production facility

#### FINAL REPORT

Second of Two 2008 NSAC Charges on the Isotope Development and Production for Research and Applications Program

# Isotopes for the Nation's Future Along range plan

NSAC Isotopes Subcommittee



#### Nuclear Sciences Advisory Committee on Isotopes

- Charge 1: Prioritize near term compelling opportunities for Isotope Research
- Recommendations
  - 1. New approaches for production of therapeutic alpha-emitting isotopes
  - 2. Coordinate production capabilities and research among existing facilities
  - 3. Create plan and make investments in isotope production to meet needs in heavy element research
  - 4. R&D to address new or increased production of He-3
  - 5. R&D to re-establish a domestic source of mass separated stable and radioactive research isotopes
  - 6. Robust investment into education and training in isotope production

FINAL REPORT One of Two 2008 NSAC Charges on the National Isotopes Production and Application Program

Compelling

pportunities

Research

**NSAC Isotopes Subcommittee** 

using lsotopes

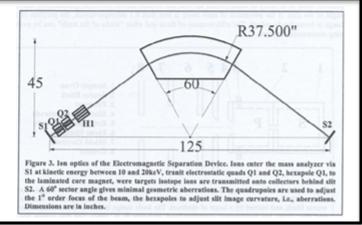


#### Solicitations: \$28.3M total Invested since 2009

- FOA 09-14 (R&D on Alternative Isotope Production Techniques)
  - FY 2009 FY 2010 56 Program Funds/ARRA: ~\$16.4M
    - 56 proposals, \$50.4M Requested
    - Awards: 13 Laboratory, 9 University, 1 Industrial
- FOA 11-448 (Research, Development, and Training in Isotope Production)
  - FY 2011 FY 2012 Program Funds: \$5.8M
    - 35 Proposals, \$40.5M Requested
    - Awards: 3 Laboratory, 4 University,1 Industrial
- FOA 13-743 (Research, Development, and Training in Isotope Production)
  - FY 2013 FY 2014 Program Funds: ~\$6.1M
    - 46 Proposals, \$42 M Requested
    - Peer review completed February 21-22, 2013
    - Awards: 7 Laboratory, 2 University
- Core R&D Support: ~\$1.5M annually



- Therapeutic alpha emitters (At-211, Ac-225, Th-229, Ac-227/Ra-223)
- New radioisotope extraction/separations technologies
- Accelerator and reactor isotope production targetry
- Isotopes for positron emission tomography (Se-72/As-72, Cu-62, Cu-64, Y-86, Zr-89)
- Heavy elements (Cf-252, Bk-249, Am-243, Cf-251, Optimization of the use of Cm feed-stocks in heavy element production)
- Nuclear Forensics, Environmental Research (U-233/Th-229, Si-32, Np-236/Pu-236)
- Therapeutic beta-emitters (Cu-67, As-77, Re-186, Rh-105, Pr-143)
- Workforce development (Most grants and core R&D)
- Stable isotope enrichment (EMIS/ESIPF, Puerto Rico Project, Li-7)
- Isotope harvesting at rare ion beam facility




#### ORNL Isotope Enrichment Project

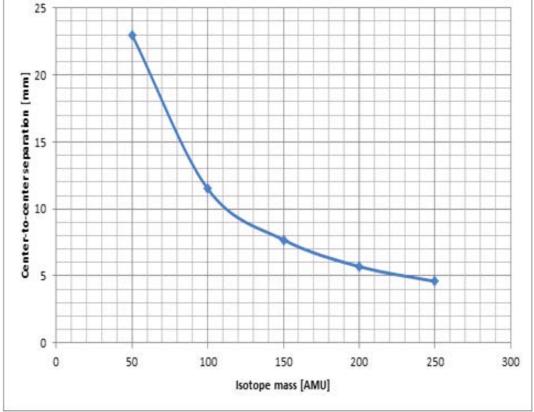
ORNL's Concept Enriched isotopes can be produced in 10's of g quantities by Electromagnetic Isotope Separators (EMIS), Gas Centrifuge Isotope Separators (GCIS) and using a combined method where GCIS is used to pre-enrich feedstock for final enrichment on EMIS



ORNL submitted proposal "Integration of Centrifuge and Electromagnetic Separation for the Preparation of Stable Isotopes", in response to SC Program Announcement LAB 09-14; May 2009





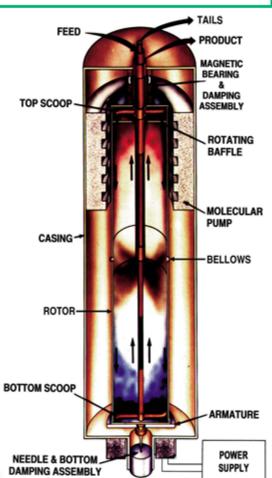

Design time and fabrication risk reduced through use of advanced 3D computer aided design and simulations tools

#### First enriched samples collected Feb 2012 Greater than 98% enriched molybdenum and nickel



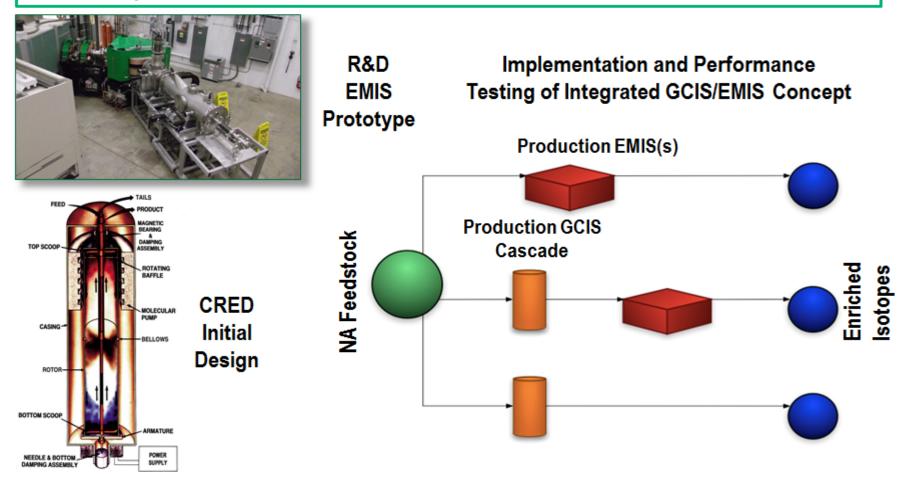
10 mA construction completed December 2011 100 mA upgrade scheduled to be complete FY15





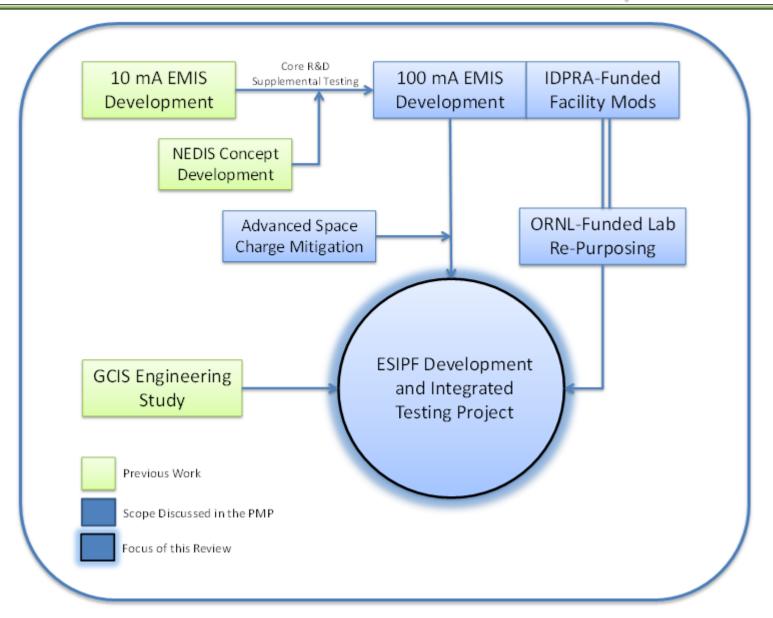

- Magnet designed for 20 amu < A < 208 amu</li>
- Optimized for a A = 100 amu as mid-point
- Magnet capable of bending the path for A up to 450 amu
- Slight amount of distortion in the magnetic field for masses above 250
- Can make adjustments in the flight path to increase the separation for heavier isotopes




The goal of this study was to examine a number of different isotope systems and centrifuge designs to determine the feasibility of using a GCIS cascade to improve stable isotope production rates using EMIS.

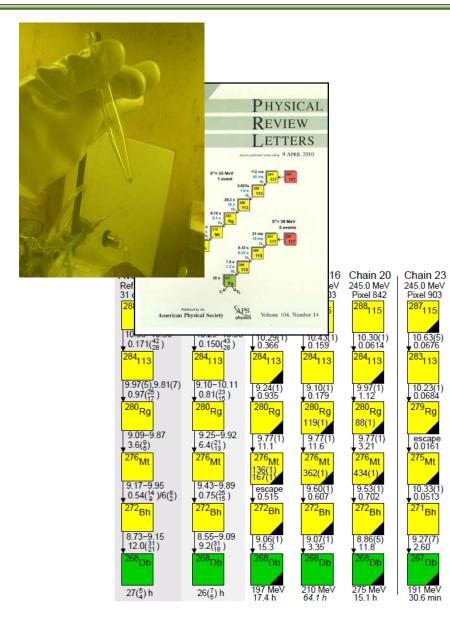
- Studied various scenarios
  - Four target gases: MoF<sub>6</sub>, WF<sub>6</sub>, GeF<sub>4</sub>, and Ni(PF<sub>3</sub>)<sub>4</sub>
  - Single machines in series
  - Cascades of different designs (number of stages/machines)
- All centrifuges were capable of separating all of these gases
  - Smaller machines better for lower mass flows and product requirements, more flexible for range of isotopes
  - Must consider more units in a cascade or passes through a single machine
  - Machine geometry must be adjusted to make some of the machines effective for a specific gas






The goal of this project is to complete final reliability and automation tasks to achieve a modern, production-class electromagnetic separator and a 9-unit gas centrifuge cascade (with a 2-unit test stand), capable of producing milligram to tens of grams of enriched stable isotopes.






#### ESIPF Technology Development Project





Isotopes for Super Heavy Element Research



## Production of Cf-252

- Optimization of irradiation of curium targets at HFIR
- Cf-252 used primarily by industry (neutron sources for oil exploration, R&D)

## Bk-249, Am-243, Cf-251

- "Hot fusion" to produce isotopes of heavy elements 117, 115
- New Isotopes of element 118
- SHE factory in Dubna

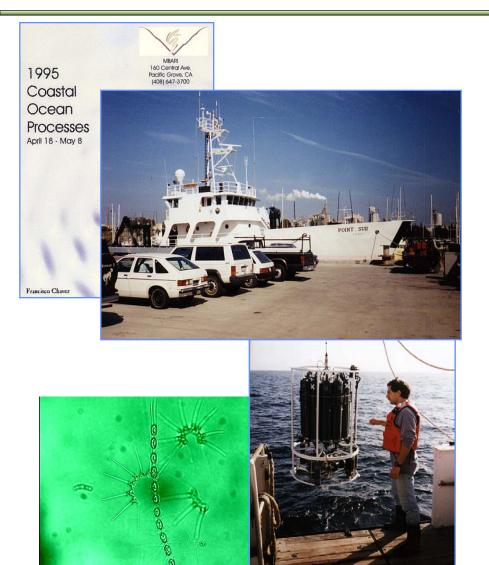


#### Accelerator Production of Ac-225/Bi-213

| U 227                                               | U 228                                       | U2                                          |                                               | U 2                                                      |                     | U 23                                               |                 | U 23                                                       |                    | U 233                                                     |                  | U 234                                    |                        |                       |                                                                     |
|-----------------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------------------|----------------------------------------------------|-----------------|------------------------------------------------------------|--------------------|-----------------------------------------------------------|------------------|------------------------------------------|------------------------|-----------------------|---------------------------------------------------------------------|
| 1,1 m                                               | 9,1 m<br>4 6.68; 6.59                       | 58<br>4: 4 6.36<br>6:339:6                  | 297                                           | 20,8<br>+ 5,888                                          | 5.818<br>4:         | 4,2 (<br>6. n. 5.458<br>5.471: 5.4                 |                 | 68,9 4<br>x 5,320; 5,2<br>Ne 24;                           | 82                 | 1,592 · 10<br>n 4,824; 4,78<br>Ne 25;                     | 3 2              | 0,005                                    | 0'a                    |                       |                                                                     |
| 6.74<br>y247:310;e <sup></sup>                      | γ (246: 187)<br>σ                           | 123: 8<br>100 a                             | B;                                            | 230h:e<br>n 25                                           | r-                  | 9 20: 84 1<br>9 . m - 25                           | 02              | y (58; 129<br>ar 73) m 74                                  |                    | v (42: 97);<br>a: 47; n; 530                              | • H              | 9 88, 194, 19 193<br>1 # 196, 19 # 1800  | 111.                   |                       |                                                                     |
| Pa 226<br>1,8 m                                     | Pa 227<br>38,3 m                            | Pa 228<br>22 h                              |                                               | Pa 229                                                   |                     | Pa 23                                              |                 | Pa 23                                                      | 04.0               | Pa 23                                                     |                  | Pa 23                                    | 3                      |                       |                                                                     |
| u 6.88; 6.82<br>¢                                   | 46,466;<br>6,416<br>¥65; 110                | c: x 6.07<br>5.799: 6<br>y911: 46<br>965    |                                               | c; u 5:08<br>5.0 0: 5.0<br>119:40                        |                     | 6:8-0.5<br>= 5.345 5.3<br>= 951-944                | 100             | + 5.012, 4.952<br>3.034<br>(2.1-300, 903<br>+ 200, m + 0.0 | -                  | y 969, m                                                  |                  |                                          | < 0,1                  |                       |                                                                     |
| Th 225<br>8,72                                      | Th 226                                      | 18.7                                        | d                                             | Th 2                                                     |                     | Th 21<br>7880                                      |                 | 7.54 10                                                    |                    | n 23<br>25,5 h                                            |                  | Th 23                                    | 2                      |                       |                                                                     |
| n 6,48255,445<br>6,504 - 17<br>7,321,248<br>359:306 | u 6,336; 6,230<br>y111: (242:<br>131)<br>g~ | a 6.00<br>5.75<br>                          | 0:256                                         | a 6,423; 1<br>964; (21)<br>O 20                          | 6.340<br>5<br>× 0.3 | 104 201 26<br>11.110<br>11.110<br>11.110<br>11.110 | 4,815           | = 4,687<br>γ (68)<br>N = 23<br>< 0.0005                    | 1.6                | β <sup></sup> 0.3: 0.4.<br>γ 26; 84<br>θ <sup></sup>      |                  | 405 10<br>4013 3.950<br>64               |                        |                       |                                                                     |
| Ac 224<br>2.9 h                                     | Ag 225                                      | Ac                                          | h                                             | Ac 2                                                     |                     | Ac 2                                               |                 | Ac 22<br>62.7                                              |                    | Ac 23                                                     |                  | Ac 23<br>7.5 m                           |                        |                       |                                                                     |
| α 6.142<br>6.060; 6.214<br>γ 216; 132               | = 5.830<br>5732<br>y 100 (1                 | 67 0.9;<br>c; a 5.3<br>y 230, 1<br>254; 160 | 1.1                                           | β <sup>-</sup> 0.04.<br>α 4.953.<br>γ (100.0<br>α 650.01 | 1                   | P 1.2.2.                                           | 1               | 11 <sup>-1,1</sup><br>y 105; 569<br>262; 146; 1            |                    | 0 <sup>-2.7</sup><br>3 455:508.<br>1244<br>6 <sup>-</sup> | P                |                                          |                        |                       |                                                                     |
| Ra 223                                              | Ra 224<br>3.66 d                            | Ra<br>4,                                    | 22                                            | Ra 2                                                     | 226                 | Ra 2<br>42.2                                       |                 | Ra 2:<br>5.75                                              |                    | Ra 22<br>4.0 m                                            |                  | Ra 23                                    |                        | 233                   | U 234                                                               |
| u 8,7162: 5,6067<br>v 269: 154: 324                 | × 5.6854.<br>5.4486                         | 8-0,3:0                                     | 4                                             | o 4,7843;<br>> 186; 0                                    | 4,601               |                                                    |                 | β <sup>+</sup> 0.04<br>γ (14: 16                           |                    |                                                           | 1                | 0.8<br>72:63:20                          |                        | 2 · 105 a<br>4, 4,783 | 2,455 . 10                                                          |
| C 14. a 130.<br>a 0.7                               | ¥241 C 14<br># 12.0                         | ¥ 40                                        |                                               | ci = 13<br>ci < 0.00                                     | 105                 | β <sup>-1.3</sup> .<br>7 27: 300                   | 303             | e"<br># 361 m < 1                                          | 2                  | β=1.0<br>1                                                | 4                | 70                                       |                        | 97                    | ia: 4,775; 4,725;; sl<br>Mg 28; Ne; 5 (23; T<br>WT: x 96; xj 4,8005 |
|                                                     |                                             | 226<br>3 m                                  | Pa 2<br>38,3                                  |                                                          |                     | 228<br>2 h                                         |                 | a 229                                                      |                    | a 230                                                     |                  | 231                                      |                        | a 232                 | Pa 233                                                              |
|                                                     | o 8.86                                      | 6.82                                        | a 6,466;<br>6,416                             |                                                          | 5.799!              | 078; 8,105;<br>6,118,<br>463; 669;                 | c: o 1<br>5.670 | 5,60<br>1: 5,8<br>9: 40; 14                                | 0.3.3              | 0.5/.<br>15: 0.326<br>1919: 455:                          | + 5.014<br>5.028 | 4.952<br>No 24, F-23<br>0:303 _ 141      | β <sup>-0</sup><br>γ96 | (3, 1,3,)»<br>9: 894: | 130 A                                                               |
|                                                     | 9                                           | 005                                         | y 65: 11                                      |                                                          | 965                 | -                                                  |                 |                                                            | U da l             | M - m 1500 -                                              | m 200; <i>m</i>  | + = 0.000                                | 100                    | σ; σι 700             | o 20+1 m -                                                          |
|                                                     | 8,7                                         | 225<br>2 m                                  | Th 2<br>31                                    | m                                                        | 18                  | 227<br>,72 d                                       | 1.              | h 228<br>913 a                                             | 2                  | 229                                                       | 7,54             | - 10 <sup>4</sup> a                      |                        | h 231<br>25,5 h       | Th 132<br>100                                                       |
|                                                     | 0.6.483<br>6.504<br>7.321<br>369 30         | : 6,445;<br>; 4<br>246;<br>(8               | 4 6,336)<br>9111: (2<br>131)<br>9 <sup></sup> | 6,230<br>4Z:                                             | 5.757.              | 8: 5,978;<br>50: 256<br>200                        | VB4:<br>0 20    | 23: 5.340<br>(216): e<br>: m < 0.3                         | 1434<br>1104<br>21 | 211;00;                                                   | ¥ 068:           | 7: 4,621<br>144 ): e<br>: # 23,4<br>0005 | β~0<br>725<br>8        | 3: 0.4                | 1,405°101<br>4013 3.950<br>964 30<br>9737 90,000                    |
|                                                     |                                             | 224<br>9 h                                  | Ac 1                                          |                                                          |                     | 226<br>9 h                                         |                 | c 227                                                      |                    | c 228<br>3.13 h                                           |                  | 229<br>2.7 m                             | A                      | 122 s                 | Ac 231<br>7.5 m                                                     |
|                                                     | e<br>0.6.14                                 | de la                                       | = 5.830<br>5732                               | 5,793;                                                   | 870.9<br>cta 5      | 1.1.1                                              | B-0             |                                                            | β-1<br>u.43        | 2:2.1                                                     | 871.             | 1                                        | 10-1<br>3-4            | 7                     | 6-                                                                  |
|                                                     | 6.060.<br>γ 216;                            | 6.214                                       | y 100. (1<br>100- 63                          | 50:                                                      |                     | 158                                                | 7(10            | 0; 84). e <sup>-</sup><br>l; ay < 0,029                    | 7.91               | 1,969                                                     | y 185            | 569.<br>46; 135                          | 124                    |                       | 7 282, 307,<br>221, 188, 38                                         |
|                                                     |                                             | 223<br>43 d                                 | Ra                                            |                                                          |                     | 1 225<br>4,8 d                                     |                 | a 226<br>600 a                                             |                    | a 227<br>2.2 m                                            |                  | 228<br>75 a                              |                        | ta 229                | Ra 230<br>93 m                                                      |
|                                                     | a 5.716                                     | 5,5067                                      | » 5.6854<br>5.4436                            |                                                          | 87 0,3              |                                                    | 0 4,7           | 843: 4,601<br>; C 14                                       |                    |                                                           | ST 0.            |                                          |                        |                       | β <sup>+</sup> 0.8<br>γ 72: 63: 20:<br>470                          |
|                                                     | G 14, 0<br>010,7                            | 130                                         | y 241<br># 12.0                               | 0.14                                                     | y 40                |                                                    | a = 1<br>er <   | 3<br>0.00005                                               | 15-1<br>7-27       | .3<br>. 300: 303                                          | e<br># 36;       | m < 2                                    | 871                    | .0                    | 470<br>e                                                            |






#### Protons on Thorium Targets

- High energy reactions
  - <sup>232</sup>Th(p,x)<sup>225</sup>Ac
  - $^{232}$ Th(p,x) $^{225}$ Th  $\rightarrow ^{225}$ Ac
  - $^{232}$ Th(p,4n) $^{229}$ Pa $\rightarrow ^{225}$ Ac
  - $^{232}$ Th(p,x) $^{225}$ Ra  $\rightarrow ^{225}$ Ac
- Low energy reactions
  - $^{230}$ Th(p,2n) $^{229}$ Pa $\rightarrow ^{229}$ Th
  - $^{232}$ Th(p,4n) $^{229}$ Pa  $\rightarrow ^{229Th}$
  - <sup>232</sup>Th(p,p3n)<sup>229Th</sup>

#### Processing

- Scale up ORNL technology
- Develop new for scale up





- Si-32 is a radioanalytical tracer to measure bloom rates of diatoms
- Rate of bloom of diatoms is a key parameter in carbon cycle
- Can only be effectively produced by spallation reactions on KCI targets
  - KCI(p,x)<sup>32</sup>Si
  - Long irradiation
  - Complicated chemistry



- Recovery of high purity U-233 and Th-229
  - Collaborative effort with NNSA Office of Non-Proliferation and International Security
  - Recovered, separated Th-229, analyzed, re-packaged ~100 g of 99.9875% pure U-233; provided ~20 g of the U-233 to New Brunswick Lab for CRM
- R&D project to investigate feasibility of accelerator production of Np-236g and Pu-236 for IDMS applications in Nuclear Forensics
  - -<sup>238</sup>U(p,3n)  $\rightarrow$ <sup>236m</sup>Np  $\rightarrow$ <sup>236</sup>Pu
  - <sup>235</sup>U(d,n)  $\rightarrow$  <sup>236g</sup>Np
- R&D project to evaluate feasibility of a new process to enrich Li-7
  - Solvent extraction technology
  - Goal to demonstrate enrichment to greater than 99.9%



#### Discussion



| Reaction                                                                                                                                 | Advantages                                                                                                                                                                                                                                                              | Disadvantages                                                                                                                                                                                                                                               |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <sup>238</sup> U(p,3n) <sup>236m,g</sup> Np<br>LANL-IPF: 1μA of<br>30 MeV protons                                                        | <ul> <li>Target material readily<br/>available</li> <li>Larger amounts of <sup>236m</sup>Np<br/>produced per irradiation:</li> <li>Estimated 1 mCi of <sup>236m</sup>Np for<br/>1h of proton beam <i>or</i></li> <li>0.4 μCi of <sup>236</sup>Pu after decay</li> </ul> | <ul> <li><sup>237</sup>Np impurity in product<br/>would require isotope<br/>separation to purify <sup>236g</sup>Np</li> <li><sup>238</sup>Np from (p,n) decays to<br/><sup>238</sup>Pu, potentially contaminating<br/>grown-in <sup>236</sup>Pu.</li> </ul> |  |  |  |  |  |
| <ul> <li><sup>235</sup>U(d,n)<sup>236m,g</sup>Np</li> <li>University of</li> <li>Washington: 1µA of</li> <li>24 MeV deuterons</li> </ul> | <ul> <li>Anticipated higher<br/>radioisotopic purity of <sup>236g</sup>Np<br/>(no production of <sup>237</sup>Np)</li> <li>0.2 ng of <sup>236g</sup>Np for 1h of<br/>deuteron beam</li> </ul>                                                                           | <ul> <li>Lower total cross section for<br/>deuteron-induced reactions<br/>compared to proton</li> <li>Available deuteron beam<br/>currents are a factor of 5<br/>smaller than available proton<br/>currents, reducing yields<br/>significantly</li> </ul>   |  |  |  |  |  |