

Isotope Needs for NSF-Supported Investigators

- Overview of NSF
- Feedback from 2008 Survey
- Update
- Summary

NSF Organization

Mathematical & Physical Sciences Directorate

NSF in National Context

- Supports most scientific disciplines, though not medicine
- Often larger mission agency budgets (NSF: \$6B)
 - NIH (BIO)
 - NASÀ (AST)
 - DOE (NP, EPP)
- Primarily support of university research
 - No dedicated labs
 - 42,000+ senior scientists; 11,500 new awards each year
 - All information indirect via PIs

Look for cases where NSF research role is unique

• Response mixed!

Responses from 2008

January 11-12, 2012

User Facility: National Superconducting Cyclotron Laboratory (MSU)

- 310 employees, incl. 120 students, 30 faculty
- 700 users

Questions:

- Properties of extreme p/n nuclei ratios
 - Limits of existence, Structure
- Origin of the elements of the cosmos
 - Novae, supernovae, stellar burning
- Properties of neutron-rich nuclear matter
 - Structure and dynamics of neutron stars

Capabilities:

- Wide variety of unstable isotopes
- from tritium (A=3) to tellurium (A=134)
- Lifetimes as low as 1 msec

NSCL

NSCL Isotope Use

CCF Primary Beam Isotope Statistics Xe-136 [5.9%] Ar-36 [5.4%] Ge-76 [6.3%] O-16 [5.3%] Ni-58 [5.3%] Kr-86 [7.4%] Ca-40 [5.2%] Xe-124 [4.9%] Kr-78 [10.2%] O-18 [3.4%] Sn-112 [2.9%] Zr-96 [1.5%] Sn-124 [1.4%] Mg-24 [1.3%] Ar-40 [12.3%] Pb-208 [1.1%] U-238 [1.1%] Ne-22 [0.9%] Bi-209 [0.8%] average fraction of Ni-64 [0.4%] operating hours Ca-48 [16.8%] Sn-118 [0.2%] 2003 - 2008

January 11-12, 2012

S

Average Isotope Consumption

[in mg/year]

200

200

500

600

1100

900

1400

1300

1700

400

100

100

3000

1300

5000

18₀

²²Ne

²⁴Mg

36_{Ar}

⁴⁸Ca

58_{Ni}

76Ge

78Kr

⁸⁶Kr

112_{Sn}

118Sn

124Sn

124Xe

136Xe

238U

Isotopes Workshop

stolz@nscl.msu.edu

University of Notre Dame

- Isotopes for Astrophysics, typically with 70-99% enrichment:
- ¹⁷O, ^{21,22}Ne, ^{25,26}Mg, ^{33,34}S, ³⁶Ar
- Cd, Sn, and Te (These purchased in Ukraine by Russian collaborators)
- Isotopes for Structure, typically with greater than 95% enrichment:
- ²⁰⁸Pb
- ^{144,148,154}Sm
- 112,114,116,118,120,122,124**Sn**
- 106,108,110,112,114,116**Cd**
- ^{128,130}Te
- 106,108,110**Pd**
- ¹⁰⁰Mo
- ⁷²Ge
- ^{35,37}Cl
- 32,34,36**S**
- ^{28,29,30}Si
- ¹⁸O

...many purchased from Russian Sources (cheaper than ORNL)

Florida State University

- moderately enriched (say 50%) stable separated isotopes for use in the ion source, especially ²⁶Mg and ²⁹Si
- long-lived radioactive isotopes: ¹⁰Be and tritium.
- targets: ¹⁴C.
- neutron-rich beams: ⁴⁸Ca

Division of Materials Research

Stable isotopes, readily available:								
	CMP: NMR and neutron scattering, ICR,							
² H	Biochemistry							
⁷ Li	CMP: neutron scattering							
¹¹ B	CMP: NMR							
	CMP: NMR, Biochemistry NMR, Biochemistry							
¹³ C	ICR							
¹⁵ N	Biochemical NMR							
		availability difficult in the past; extremely high						
¹⁸ O	ICR	cost						
²⁵ Mg	Biochemical NMR							
⁴³ Ca	Biochemical NMR							
⁶⁷ Zn	Biochemical NMR							
⁵⁷ Fe	CMP: Mossbauer Spectroscopy							
⁵⁷ Co	CMP: Mossbauer Spectroscopy							
⁶³ Cu	CMP NMR							
Stable isotopes, not readily available:								
		Concerned about future availability, given helium						
³ He	CMP: Cryogenics applications	shortage						
¹⁷ O	CMP NMR, Biochemistry NMR	Availability has dropped dramatically						
¹¹⁴ Cd	CMP: neutron scattering							
¹⁶² Dy	CMP: neutron scattering							
¹⁸⁰ Hf	CMP: neutron scattering							
²⁰² Pb	Geochemistry, High precision detection of lead							
	cycling through the environment	Would like to have, but is not available						
²⁰⁵ Pb	Geochemistry, High precision detection of lead	Critically low inventory and is no longer						
	cycling through the environment	produced.						
CMP: Condensed Matter Physics								
ICR: Ion Cyclotron Resonance								

Division of Chemistry

Response 1:

Our grantees would make only occasional use of most isotopes. We believe that one occasional isotope, tritium, is missing in the workshop report.

The obvious and most important isotope for our division:

Deuterium present in deuterated solvents.

The workshop report indicates D is not produced in the US. As a rough estimate, about 150 funded programs in CHE make heavy use of deuterated solvents. *Thus, there is a need by our grantees for about 150 liters per year, mainly of water, chloroform, and dimethylsulfoxide.*

The workshop seems to under emphasize ¹⁵N which along with ¹³C has heavy use in biological NMR studies of proteins and nucleic acids. The workshop attendees did not reflect this relatively large group of investigators. In general such NMR studies are not performed by our grantees, but the results of such studies have a significant effect on the projects many of our grantees pursue.

Isotopes are widely used in bioanalytical assays. There has been a desire to replace them with fluorescent tags but derivatization chemistry is not always selective. Bioassays often use deuterium, phosphourus and iodine isotopes.

January 11-12, 2012

Division of Chemistry

Response 2:

In my program, the primary use for special isotopes is in spectroscopy. The NMR community uses specific. Example: S isotope that is only available from Russia.

Some positron-based research uses radioactive Na to produce e⁺, but these would be minor users compared to the need for PET scans.

We also support research using isotopic substitution studies in kinetics, and isotope-editing to clean up peptide infrared spectra.

Most isotopic labeling in the physical chemistry community uses primarily deuterium and ¹³C. This is the norm for us.

My impression is that the P-Chem PIs do not want to deal with the hassle of working with radioactive materials. We have had one recent CAREER proposal from someone to do spectroscopy with molecules containing heavy-metal radioactive isotopes, but this was to be done in collaboration with DOE laboratory staff at a DOE lab set up to handle these things.

Division of Chemistry

Response 3:

Isotopes are widely used in bioanalytical assays. There has been a desire to replace them with fluorescent tags but derivatization chemistry is not always selective. Bioassays often use deuterium, phosphourus and iodine isotopes.

Response 4:

¹⁸O, ¹⁵N, ¹³C, ²H: high-molecular weight protein NMR structural determinations
³H, ¹⁴C, ³²P: radioactive tracers in metabolic and biosynthesis studies

From Division Director:

You may remember the comments made by the GE representative at our 2006 workshop on innovation concerning the need for trained PhDs in radiochemistry, since he wanted to hire 50 such individuals and yet was unable to find any.

Directorate for Biosciences

Summary of responses:

•Where isotope needs exist, they tend to overlap those of NIH, which would be far greater

•University researchers are moving away from radioisotopes because of the strict regulatory requirements for use

- •Biomolecular community uses a variety of isotopes for NMR:
 - •Not represented in workshop, but
 - •¹³N, ¹³C most commonly used and abundant
 - •No large increase in demand seen over next 5 years

Directorate for Engineering

Summary of responses:

•Isotope needs in general 'not an issue'

ENG has partnered on 5-year initiative with DHS Domestic Nuclear Detection Office; best to refer relevant isotope needs to DHS

Division of Materials Research December 2011*

Α	Institution	Intended Use	Purity	Physical Form	FY12	FY13	FY14	FY15	FY16
¹⁸ O	University A	Isotopic labeling	0.99	Gas	10 I				
¹⁵ N	University A	Isotopic labeling	0.99	Gas	10 I				
² H	University A	Isotopic labeling	0.99	Gas	10				
²³⁸ U	University B	NMR measurements	0.999	Ingot	10 g				
⁶¹ Ni	University B	NMR measurements	0.999	ingot	0.5 g				
¹⁰¹ Ru	University B	NMR measurements	0.999	Ingot	1 g	1 g	1 g	1 g	1 g
⁹⁹ Ru	University B	NMR measurements	0.999	Ingot	1 g	1 g	1 g	1 g	1 g
²⁹ Si	University B	NMR measurements	0.999	Solid	1 g	1 g	1 g	1 g	1 g
¹³ C	University B	NMR measurements	0.999	Solid	1 g	1 g	1 g	1 g	1 g
¹⁷ O	University B	NMR measurements	0.999	Gas	1 g	1 g	1 g	1 g	1 g
¹⁴ C	University C	Environmental Transfer studies in Bacteria	C-14 Radio labeled CNT	Solid	1 mCi	1 mCi	1 mCi		

Summary

- NSF covers broad range of science
- Usually not the largest stakeholder for specific isotopes
- Specific research areas (NP, condensed matter) use broad range of isotopes
- Investigators typically do not contact NSF regarding their isotope requirements
- Investigators may be unaware of pending shortages

Best Practice for Individuals and Small Groups

Investigators most likely to contact source directlyimperative to make that source accessible and user friendly

January 11-12, 2012