IMPORTANCE AND ROLE OF ISOTOPES TO THE RADIOPHARMACEUTICAL AND INDUSTRIAL COMMUNITIES

Workshop on the Nation's Needs for Isotopes: Present and Future August 5-7, 2008

Roy W. Brown Senior Director, Federal Affairs Council on Radionuclides & Radiopharmaceuticals

Background on CORAR

- CORAR is the North American Trade Association for the manufacturers and distributors of radionuclides & radiopharmaceuticals
- All of the major manufacturers are members of CORAR
- Members utilize radionuclides to produce radiopharmaceuticals and calibration sources for medical diagnosis and therapy, radionuclides for life science research, and industrial sources
- CORAR wants to assure a reliable supply of radioisotopes for Industrial, Medical, and Research applications

CORAR Membership

- Bracco Diagnostics, Inc.
- Cell Therapeutics, Inc.
- Cardinal Health
- Cellectar, LLC
- Covidien (formerly Tyco Healthcare/Mallinckrodt, Inc.)
- DRAXIMAGE, A division of DRAXIS Specialty Pharmaceuticals Inc.
- Eckert & Ziegler Isotope Products
- EUSA Pharma (formerly Cytogen Corporation)
- **GE Healthcare**
- GlaxoSmithKline
- International Isotopes Inc.
- Lantheus Medical Imaging (formerly Bristol Myers Squibb)
- MDS Nordion
- Molecular Insight Pharmaceuticals, Inc.
- PerkinElmer Life and Analytical Sciences, Inc.
- PETNET Solutions, Inc./Siemens
- QSA Global, Inc.
- Radiopharmacy of Indianapolis

Isotopes Marketed by CORAR Companies

Actinium-227	Chlorine-36	lodine-123
Aluminum-26	Chromium-51	lodine-125
Americium-241	Cobalt-56	lodine-129
Americium-243	Cobalt-57	lodine-131
Antimony-124	Cobalt-58	Iridium-192
Antimony-125	Cobalt-60	Iron-55
Barium-133	Copper-64	Iron-59
Berylium-107	Curium-244	Krypton-85
Bismuth-207	Europium-152	Lead-210
Cadmium-109	Europium-154	Lutetium-177
Calcium-45	Flourine-18	Manganese-54
Californium-252	Gadolinium-148	Mercury-203
Carbon-11	Gadolinium-153	Molybdenum-99
Carbon-14	Gallium-67	Neptunium-237
Cerium-139	Germanium-68	Nickel-59
Cerium-141	Gold-195	Nickel-63
Cerium-144	Gold-198	Niobium-93m
Cesium-134	Holmium-166m	Niobium-95
Cesium-137	Indium-111	Palladium-103

Phosphorus-32 Phosphorus-33 Plutonium-236 Plutonium-238 Plutonium-240 Plutonium-241 Plutonium-242 Polonium-208 Polonium-209 Promethium-147 Radium-224 Radium-226 Radium-228 Rubidium-86 Ruthenium-103 Ruthenium-106 Samarium-151 Scandium-46 Selenium-75

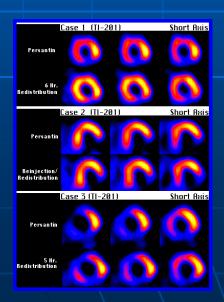
Silicon-32 Silver-108m Silver-110 Sodium-22 Sodium-24 Strontium-82 Strontium-85 Strontium-89 Strontium-90 Sulfur-35 Tantalum-182 Technetium-95 Technetium-99 Thallium-201 Tellurium-123m Thorium-228 Thorium-230 Thorium-232 Thullium-170

Tin-113 Titanium-44 Tritium-3 Tungstun-188 Uranium-232 Uranium-233 Uranium-234 Uranium-235 Uranium-236 Vanadium-49 Xenon-133 Ytterbium-169 Yttrium-88 Yttrium-90 Zinc-65 Zirconium-95

Background on Nuclear Medicine

Nuclear medicine relies on the use of specialized drugs called radiopharmaceuticals, which are radioactive compounds or radioactive isotopes. These drugs are administered under the supervision of a physician typically intravenously, but sometimes also through inhalation or orally. The majority of nuclear medicine procedures are diagnostic, but there are also a number of therapeutic nuclear medicine treatments including for bone pain palliation related to Prostate Cancer, Non-Hodgkin's Lymphoma, Liver Cancer and Thyroid Cancer.

Background on Radiopharmaceuticals - Cont'd


- Nuclear medicine procedures are primarily performed in a hospital or independent imaging facility. Only physicians trained in nuclear medicine and licensed to handle radioactive materials can perform these procedures.
- The radiopharmaceutical concentrates in the area of the body to be examined where special cameras capture the nuclear particles or photons emitted by the radiopharmaceutical producing a visual image of the body system, organ or tissue providing physicians with physiological and physical information.
- Other modalities cannot provide this important functional information to physicians.

Important Radionuclides in Nuclear Medicine

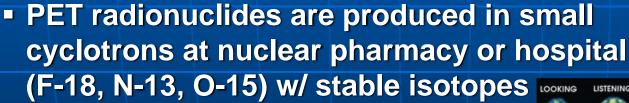
- Radiopharmaceuticals are used more than 100,000 times each day worldwide
- More than 100 diagnostics tests and therapeutic procedures:
 - Detection and staging of cancer
 - Detection of heart and thyroid diseases
 - Bone pain palliation from cancer, treatment of neuroendocrine tumors and liver cancer
 - Imaging of stress fractures
 - Treatment of prostate cancer with I-125 and Pd-103 seeds
- Many radionuclides are produced by radiopharmaceutical manufacturers (TI-201, I-123, Ga-67, In-111)
- Many radionuclides are produced by non-power reactors (Mo-99, I-125, I-131, Xe-133, P-32)

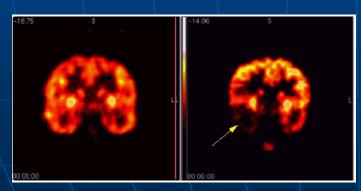
Implanted I-125 Brachytherapy Seeds

Cardiac Imaging w/ Rb-82

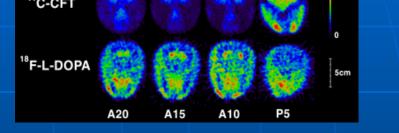
Tc-99m Whole Body Scan

Microspheres labeled w/ Y-90


Cardiac Perfusion Study w/ TI-201


Positron Emission Tomography (PET) in Nuclear Medicine

 PET Imaging is the fastest growing segment of Nuclear Medicine


Uses of PET

Detection & staging of cancer Detection of heart disease Detection of thyroid disease Study of brain function

Imaging of Epilepsy patient with F-18 FDA

Imaging of Parkinson's patent with C-11 & F-18

THINKING REMEMBERING

F-18 FDG Research sponsored by BER at UCLA

Background on Commercial Sources

Process Control:

 Level/fill/density gauges – Cs-137, Co-60, Am-241, Am/Be, Cf-252, Kr-85, Pm-147, Sr-90, TI-204, Ba-133, C-14

Industrial level & density gauges

Process control of thickness

Level/density measurement

Paper thickness gauging

Background on Commercial Sources – Cont'd

Analytical Uses – Am-241, Co-57, Fe-55, Cd-109, Cm-244, Ni-63, H-3, Co-60, Cf-252, Am/Be, Cs-137

Oil well logging

Weld quality assurance

Metals detection using x-ray diffraction

Bulk material analysis

Road bed analysis

Background on Commercial Sources – Cont'd

 Other Uses (non-destructive testing, geology, safety & quality, health physics, gamma sterilization) – Ir-192, Co-60, Se-75, Yb-169, Tm-170, Cs-137, Am/Be, Cf-252, Po-210, Co-57, Ge-68, Gd-153

Ge-68 check sources

Chemical agent detection

Homeland security

Ge-68 phantom

Stable Isotopes Needed for Isotope Production

Key enriched stable isotopes are needed for the production of medical & commercial isotopes

Stable Isotope	Used to produce	Product Used for:
TI-203	TI-201	Myocardial perfusion imaging
Cd-108	Cd-109	Calibration Sources
Cd-112	In-111	White blood cell labeling/infection localization
N-15	O-15	PET production of oxygen compounds
O-18	F-18 FDG	Cardiac/brain metabolic studies
Pd-104	Pd-103	Brachytherapy seeds
Te-123/124	I-123	Thyroid Imaging
Zn-68	Ga-67	Tumor & infection localization
Yb-168	Yb-169	Industrial radiography
Se-74	Se-75	Industrial radiography
Ni-60	Co-57	Gamma Camera Calibration sources

Mo-99 Supply

- Mo-99/Tc-99m is the most used radionuclide in diagnostic nuclear medicine
- Patient needs for Tc-99m must be reliably met
- CORAR is supportive of conversion to LEU fuel and targets for isotope production
- CORAR members are embracing new technology and each company is evaluating new opportunities themselves
- Conversion to LEU will take significant time to resolve new processing and clear regulatory hurdles

DOE's Rich History of Technology Development & Routine Production

- Initial development work on Tc-99m generator done at Brookhaven
- Tc-99m MAG3 developed by Brookhaven
- IPF at Los Alamos provides important Ge-68, Sr-82, As-73
- Oak Ridge has been a major source of Cf-252 used by the nuclear power industry, U.S. Navy and for commercial uses
- DOE BER has funded productive nuclear medicine research last several years

Missed & Future Opportunities

- DOE was not able to start Mo-99 production in 1990's
- Shutdown of the calutrons have required U.S. industry to turn to Russian suppliers of stable isotopes
- Shutdown of Cf-252 production would leave industry without an alternative supply
- Shutdown of Am-241 production has caused problems for U.S. industry
- CORAR looks forward to working with the Office of Science on creating improvements in Isotope Production & Distribution at DOE

What Industry Needs From DOE

- DOE has unique resources that cannot be easily duplicated
 HFR at ORNL, ATR at INEL, LANSCE/IPF at LANL
 - Calutrons at ORNL, U-233 stockpile at ORNL
- These resources should be used to provide industry with isotopes that are not otherwise available to the U.S.
- Many key isotopes can only be acquired from DOE or imported from a very limited number of countries
- Industry representatives should be included in any DOE advisory committee to determine which isotopes will be produced and policies affecting isotope production
- Advisory committee should include industry reps, not just R&D reps

Summary

- Industry is willing to work with DOE and pay fair prices for its radionuclides
 Industry is supportive of conversion to LEU, but it will take time
- Industry deserves a role in DOE advisory committees on isotope production, bringing their expertise on which isotopes will be needed
- Industry needs DOE's help for key stable and radioactive isotope production

