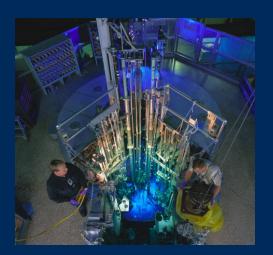
## University of Missouri and MU Research Reactor Center

**DOE Isotope Workshop** 

August 2008



### University of Missouri Research Reactor Center


## The MURR Center — a Global Resource

- A 10 MW reactor that operates 24 hours a day, seven days a week, 52 weeks a year
- 150 full time employees
- In 2007, produced 41 different isotopes with >1000 shipments to 14 different countries
- Each and every week MURR supplies the active ingredients for FDA approved Quadramet<sup>®</sup> and TheraSpheres<sup>®</sup>

### MURR... An MU Pride Point As a Unique National Resource



### Facts & Figures



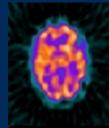
- October 1966 -- First Reactor Start-up
- At 10 megawatts, MURR is the largest university research reactor
- 2006 -- Relicense application submitted for 20 more years of operation
- Facility operates 24 hours/day; 6 ½ days per week; 52 weeks a year
- It's the People that matter most:
  - Faculty & Staff: 150; Joint Appointments 10; Joint MURR funded MU staff 6
- Students Learning while helping!
  - Part-time student employees 26
  - Additional students with unescorted access to MURR 20



## University Research Reactors (Power ≥ 1 MW)

| Facility                              | Power (MW) |
|---------------------------------------|------------|
| University of Missouri-Columbia       | 10         |
| Massachusetts Institute of Technology | 5          |
| University of California – Davis      | 2          |
| Rhode Island Nuclear Science Center   | 2          |
| Oregon State University               | 2          |
| University of Texas – Austin          | 1          |
| North Carolina State University       | 1          |
| Pennsylvania State University         | 1          |
| Texas A&M University                  | 1          |
| University of Massachusetts – Lowell  | 1          |
| University of Wisconsin               | 1          |
| Washington State University           | 1          |

## University of Missouri -MU Research Reactor Center


A 25-year history of successful and innovative radiopharmaceutical R&D and collaborations with industry....

• **Ceretec<sup>TM</sup>** (with Tc-99m), a diagnostic used to evaluate cerebral blood flow in patients & label white blood cells

• **Quadramet**<sup>®</sup> (with Sm-153), a therapeutic for treatment of pain associated with metastatic bone cancer

• **TheraSphere**<sup>®</sup> (with Y-90), a glass microsphere used to treat patients with inoperable liver cancer

- Cs-131 brachytherapy seeds to treat prostate cancer
- Gd-159 and Ho-166 for research in skeletal targeted radiopharmaceuticals
- Ir-192 brachytherapy seeds to treat solid tumors
- Lu-177 and Pm-149 for receptor-targeted radiopharmaceuticals (support 30 research and clinical trials)
- P-32 and P-33 biomedical radiotracers
- Se-75 biomedical radiotracers







## MURR Core Competencies include Strong Record of Regulatory Compliance







ATES OF

## MURR Core Competencies include International Shipping







## MURR Core Competencies include Volume Radiochemical Processing

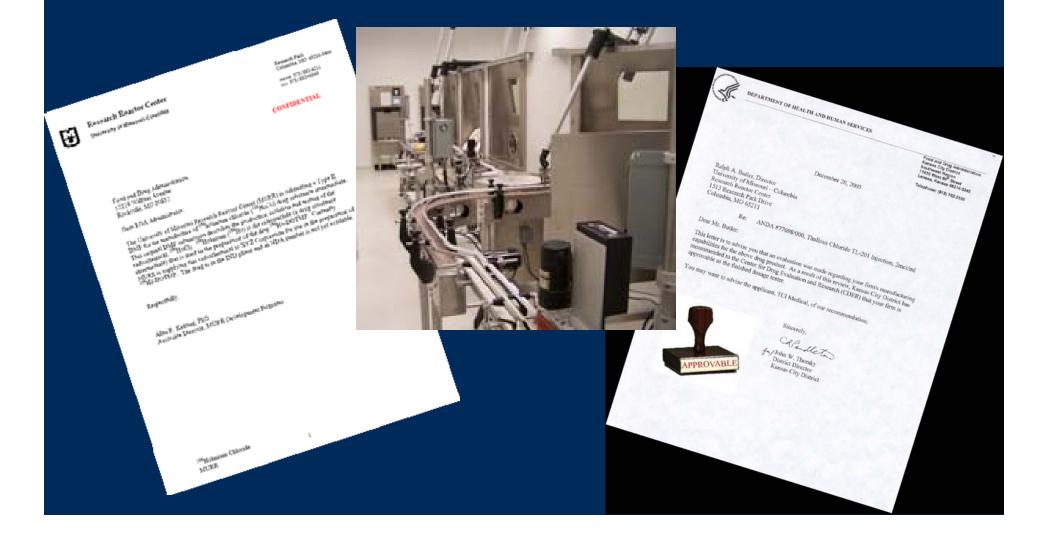




*Hot Cells Designed with Versatility in Mind* 



Lu-177 Weekly producing 40 Ci batches Potentially capable of 1000's Ci per week


1<sup>st</sup> Application...200 Ci batches of Ho-166Designed for 500 Ci Batches

P-33 Hotcell Facilities

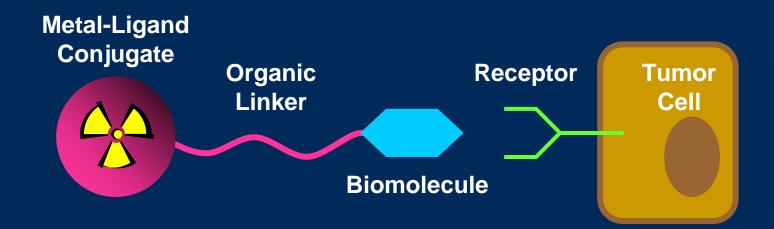


## FDA Approvable Facilities... cGMP & GLP Programs

# MURR Evolving Competencies Target FDA-approvable cGMP and GLP Programs



## **MURR Produced Isotopes**


| 43 Isotopes of 37 Elements Shipped in 2006 |                |                |  |  |  |
|--------------------------------------------|----------------|----------------|--|--|--|
| As-76                                      | Hg-197; Hg-203 | S-35           |  |  |  |
| Au-198                                     | Ho-166         | Sb-122; Sb-124 |  |  |  |
| Ba-135m                                    | Ir-192         | Sc-46          |  |  |  |
| Ca-45; Ca-47                               | K-42           | Se-75          |  |  |  |
| Co-60                                      | La-140         | Sm-153         |  |  |  |
| Cr-51                                      | Lu-177         | Sn-125         |  |  |  |
| Cs-134                                     | Na-24          | Sr-89          |  |  |  |
| Eu-154                                     | P-32; P-33     | Tb-161         |  |  |  |
| Fe-55                                      | Pm-149         | <b>Tl-204</b>  |  |  |  |
| Fe-59                                      | Rb-86          | <b>Y-90</b>    |  |  |  |
| Gd-159                                     | Re-186         | Yb-169; Yb-175 |  |  |  |
| Ge-71                                      | Rh-105         | Zn-65          |  |  |  |
|                                            |                | Zr-95; Zr-97   |  |  |  |

Sole US supplier

### Radiopharmaceutical Research

Currently developing a suite of *carrier free lanthanides* to work in conjunction with *selective targeting agents* to locate and treat cancer.

| Ln                | † <sub>1/2</sub> | $\beta_{max}$ | $E_{\gamma}\left(I_{\gamma}\right)$ | Avg Range<br>(cell diameter) |
|-------------------|------------------|---------------|-------------------------------------|------------------------------|
| <sup>177</sup> Lu | 6.7 d            | 0.5 MeV       | 208 keV (11%)                       | ) 20                         |
| <sup>166</sup> Ho | 1.1 d            | 1.8 MeV       | 286 keV (3%)                        | 60                           |
| <sup>149</sup> Pm | 2.2d             | 1.1 MeV       | 81 keV (6%)                         | 120                          |



### **Radiopharmaceutical Research**

Dow

Improved daily.™

Living.

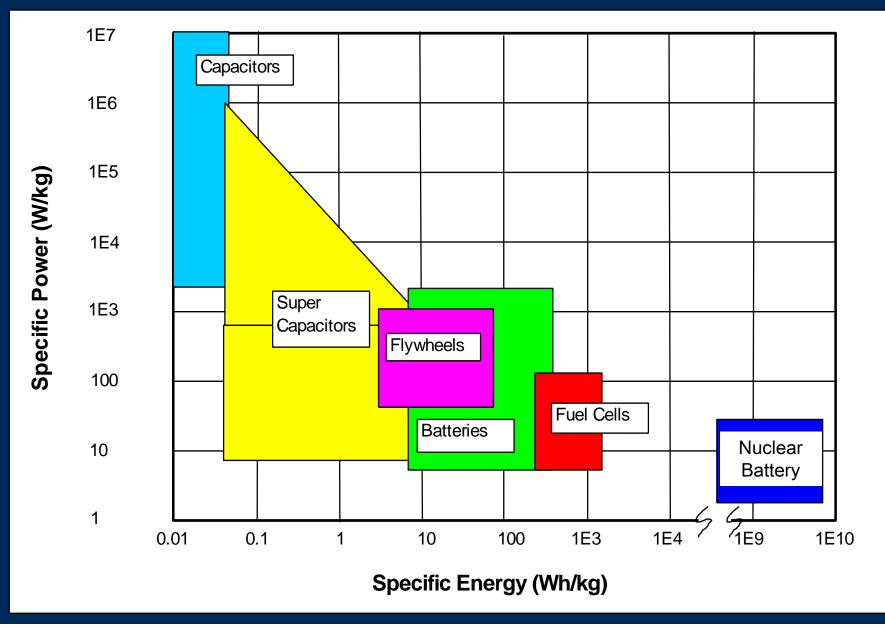
THERAGENICS CORPORATION®

## A History of Success

- Focus on Cancer
  - $Sm-153 Quadramet^{\mathbb{R}}$
  - Y-90 TheraSpheres<sup>®</sup>
- Real Patients Demand Our Safe Reliability

IsoRay Medical

The miracles of science-


MDS Nordion

Science advancing health



**TheraSphere**<sup>®</sup>

### Radioisotope Micropower Sources Ragone Plot



### Potential Isotopes for Radioisotope Micropower Source Applications

| Radioisotope      | E <sub>avg</sub> (keV) | Half-life<br>(years) | Maximum<br>BOL<br>activity<br>(TBq/cm <sup>3</sup> ) | Maximum<br>BOL source<br>power<br>(mW/cm <sup>3</sup> ) | Particle<br>range in<br>source (µm) | "Realistic"<br>BOL P <sub>out</sub><br>(µW/cm <sup>2</sup> ) |
|-------------------|------------------------|----------------------|------------------------------------------------------|---------------------------------------------------------|-------------------------------------|--------------------------------------------------------------|
| <sup>147</sup> Pm | 61.8                   | 2.6                  | 247                                                  | 2448                                                    | 9.6                                 | 141.1                                                        |
| <sup>210</sup> Po | 5304                   | 0.38                 | 1566                                                 | 1.3E6                                                   | 1                                   | 1.4E4                                                        |

 $\beta$  source

- 100% isotope enrichment
- $\eta_{conv}$ =10%,  $\eta_{source}$ =30%
- source thickness=2 x beta range

 $\alpha$  source

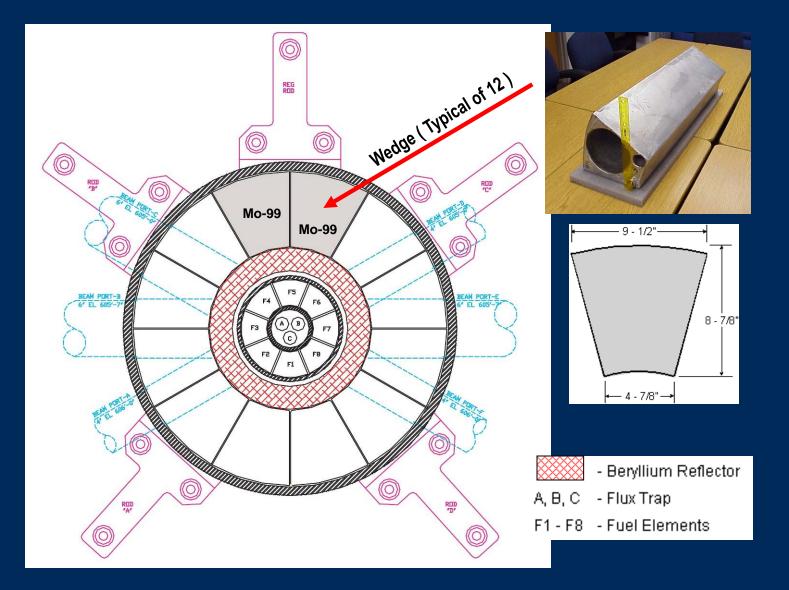
- 100% isotope enrichment
- $\eta_{conv}$ =10%,  $\eta_{source}$ =90%
- source thickness=1 μm

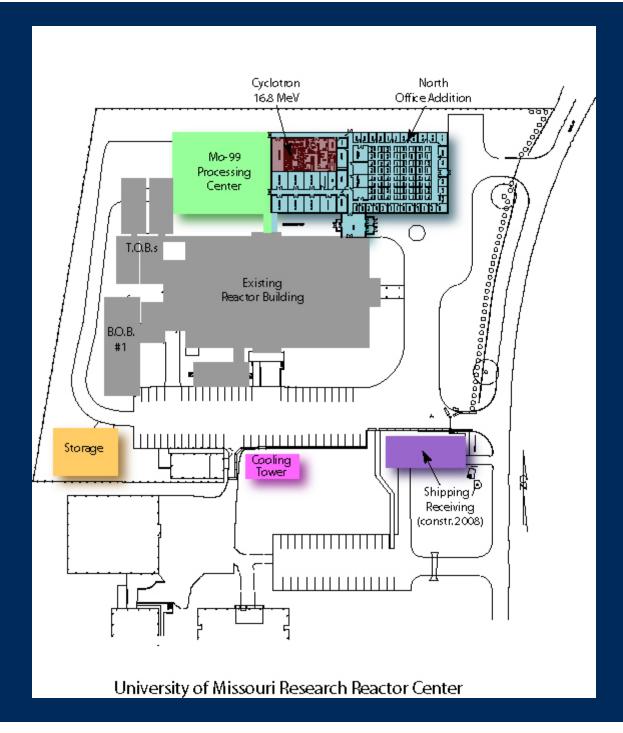
### **Examples of Current Collaborations** with Industry

- Pm-147 and 210-Po for nuclear batteries
- Cs-131 brachytherapy seeds to treat prostate cancer
- Gd-159 and Ho-166 for research in skeletal targeted radiopharmaceuticcals
- Ir-192 brachytherapy seeds to treat solid tumors
- Lu-177 and Pm-149 for receptor-targeted radiopharmaceuticals (support 30 research and clinical trials)
- P-32 and P-33 biomedical radiotracers
- Se-75 biomedical radiotracers
- Sm-153 for Quadramet
- Y-90 for Theraspheres

### Need for Mo-99/Tc-99m

- Tc-99m is used in over 80% of all medical isotope procedures worldwide.
- National need used  $\sim$  35,000/day in U.S.
- Use is expected to increase 7% to 10% annually for the next ten years.
- More than 30 different radiopharmaceuticals use Tc-99m for disease detection & organ structure & function.


### U.S. History of Mo-99 Production


- 1967 MURR begins production of  $(n, \gamma)$  Mo-99 for Mallinckrodt Nuclear Co.
- 1969 MURR begins weekly production of Mo-99.
- 1977 MURR increases Mo-99 production for MediPhysics Inc.
- 1984 MURR ceases Mo-99 production.
- 1980 Cintichem, Inc. begins production of fission product Mo-99 and is the single U.S. supplier. .
- 1989 Cintichem reactor develops leak and is closed.
- 1991 DOE purchased Cintichem technology, equipment and DMFs for production of Mo-99, I-125, X3-133
- 1991 DOE identified Omega West Reactor at LANL as proposed backup supply facility and constructs processing facility.
- December 1992 Omega West Reactor at LANL develops leak and is closed.
- Until 1993, two Canadian reactors, operated by Atomic Energy of Canada Limited (AECL) at the Chalk River site (located about 100 miles from Ottawa, Canada), were available to produce Mo- 99.
- 1996 DOE selects Annular Core pulse reactor at Sandia National Lab. to become backup supply facility and constructs processing facilities. Project never completed.
- 1998 Canadian MAPLE reactors were scheduled to open, but remain shutdown today due fundamental design flaw.
- 2008 Decision made to discontinue work on MAPLE 1 & 2.

### Mo-99 Production at MURR

- Overall objective is to develop the capability to produce Mo-99 from LEU targets.
- Production objective is ~50% of current U.S. weekly demand.
  - Current U.S. weekly demand is estimated to be 6000 six-day Curies (Ci) per week
    - 6000 six-day Ci equates to about 40,000 Ci (End-of-Irradiation), Synonymous with "Out-of-Reactor" Ci
  - Must irradiate / process 40 50 targets per week to satisfy ~50% weekly demand.
- Expect turnkey construction project.
  - INVAP (Argentina) has designed & built three facilities.
  - MURR and DOE NNSA are separately funding two different conceptual design by INVAP.

## Reactor Plan View





## Proof of Concept Summary

- Multiple sample targets are assembled
  - Both Argonne produced LEU foil and KARIE foil
  - Target will be instrumented for temperature
- Multiple cold runs completed with >94% recovery
- Irradiation/processing of LEU small scale target
  - July/August 2008
    - Awaiting license amendment from U.S. NRC to



4th Qtr 2007

#### 2010 2011 2012 2 0 2 0 08 09 10 3 6 7 9 4 8 2 5

#### **Estimated completion**

- 1 Proof of concept
- 2 Production facility conceptual design
- 3 Target design selection
- 4 Waste stream studies
- 5 Business plan development
- 6 Reactor/Irradiation design
- 7 Facility design
- 8 Materials license application
- 9 Construction
- 10 Commercial

### University of Missouri – A Unique Set of Resources



College of Engineering

Life Sciences Center



College of Veterinary Medicine

MURR Center

## Core Competencies ...Education and Training

- Introduction to Radiochemistry
  - 40-50 students per year;
    largest class in the nation
  - Radiation detection and radiochemistry labs at MURR



### Host for the 2007 ITAC/SSAC Course

- 35 foreign national participants
- Safeguard exercises using CANBERRA Aquila systems

### MU — Preparing the Next Generation

• MU's **Introduction to Radiochemistry** course had 51 students in Academic Year 2006, the highest enrollment in the US



### MU — Preparing the Next Generation

 MU has the nation's only National Science Foundation-sponsored Research Experience for Undergraduates (REU) program in Radiochemistry



Vialtose: An Alternative Carbohydrate Source for Premature Infants