

Radioisotope Use at the ORD/EPA

Presented to Workgroup 2 Research Use of Isotopes

Ram Ramabhadran EPA/ORD/NHEERL/NTD August 5-7, 2008

Outline

- EPA Organization
- Current use pattern
- Novel uses that may arise

EPA Office of Research and Development

List of Isotopes used at EPA/RTP*

Am-241 I-125

As-73** Kr-85

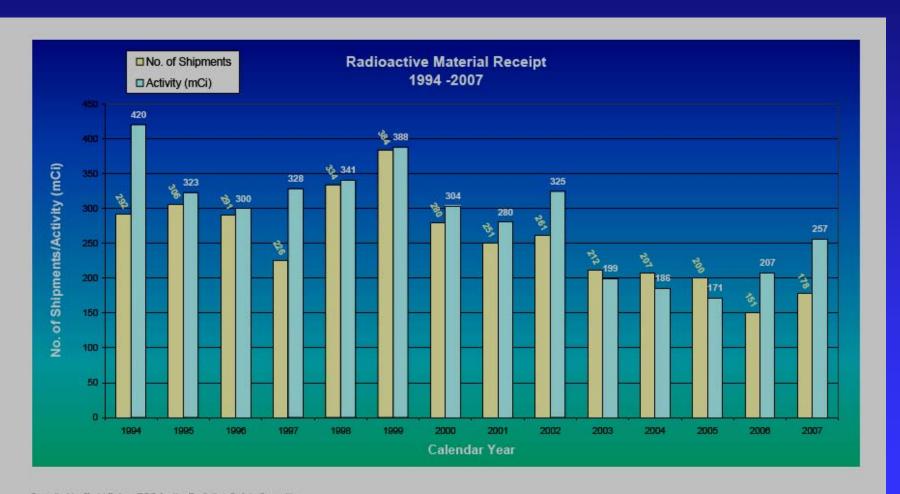
C-14 Ni-63

Ca-45 P-32

Cd-109** P-33

CI-36 Po-210

Cr-51 S-35


Fe-59 U-238

H-3 Zn-65**

** Supplied by DOE; *All lots <10 mCi

RAM Use Trend at EPA/RTP 1994-2007

Compiled by Todd Baker, RSO for the Radiation Safety Committee

EPA/RTP Vendor List

Open Compounds

				_
Vend	or/C	ompai	nv N	ame
V CIIU		OTITION		(WIII)

Amersham Biosciences Corp.

(Now GE HealthCare)

ARC, Inc.

(American Radiolabeled Chemicals)

Bachem Americas, Inc.

Chemsyn Science Laboratories

Diagnostic Products Corp. (Now Siemens Medical Solutions Diagnostics)

Diagnostic Systems Laboratories

GE Health Care (See Amersham)

ICN Pharmaceuticals

IDS Inc.

Linco Research, Inc. (Division of Millipore)

Los Alamos National Laboratories

MP Biomedicals (See ICN)

Nichol Institute Diagnostics

PerkinElmer Life Sciences

Phoenix Pharmaceuticals, Inc.

Siemens Medical Solutions Diagnostics (See DPC)

EPA/RTP Vendor List

Sealed Sources

(distributed under general licenses usually in equipment/instruments)

Vendor/Company Name

Agilent Technologies (formerly Hewlett Packard)

Anderson

Femtoscan

Inficon

Isotope Products Laboratories (See TSI/3M)

Largus Applied Technology

February 20, 2007

New Needs/Applications <u>Example</u>

Neutron activation of Fe nanoparticles for ADME

- Iron nanoparticles are used in water remediation, hence toxicity studies needed
- Iron is an abundant element in biological systems, hence extraneously administered iron is difficult to measure through ICP-MS, AAS, AES or neutron activation analysis
- It is difficult to manufacture radioactive iron nanoparticles
- Neutron activation of nanoparticles only alternative for ADME studies (oral gavage)

Neutron Activation of Fe Considerations

Iron-derived radionuclides

Isotope	Abund. %	Therm. Xn barns	Product	T _{1/2} (d)	Decay mode
Fe-54	5.9	2.3	Fe-55	997	EC, no γ emission
Fe-56	91.7	2.6	Fe-57	Stable	
Fe-57	2.1	2	Fe-58	Stable	
Fe-58	0.28	1.3	Fe-59	45	B decay, γ ~ 1 MeV

Other radionuclides observed

Isotope	T _{1/2}	Gamma energy (MeV)
Cr-51	27 d	0.32
Mn-54	312d	0.835
Co-60	5.2 yr	1.17, 1.33

Summary

Results

- -100 mg Activated for 75 hours at ~1MW at NCSU
- -Yield ~ 30 μCi: Sp act:~ 0.3 μCi/mg
- -Cost \$6000/run

Problems

- -Higher specific activity desired
- -Extend activation time- costly!
- -Create Fe nanoparticles with higher Fe 58- possible?

Future needs

Other such applications should be anticipated in in future