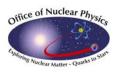


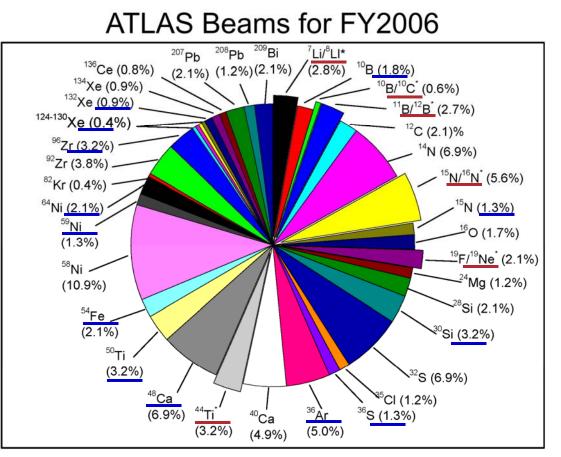
... for a brighter future

UChicago ► Argonne_{uc}


A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Isotope Needs for ATLAS Operations and CARIBU

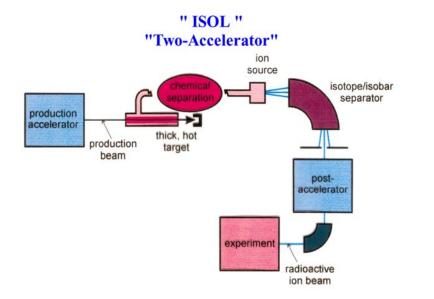
Richard Pardo


Workshop on The Nation's Needs for Isotopes: Present and Future

August 5-7, 2008

Present ATLAS Operation

- ATLAS typically provides beams of 30-40 different isotopes each year.
- In FY06, 17% of ATLAS research was with radioactive beams
- Mostly short-lived RIBs made in-flight from stable beam.
- High intensity stable beams often need enriched stable isotopes for ion source.


Radioactive beams comprised 17% of running time in FY06

Radioactive beam

Enriched material

Beam Production Methods

+ "Atlas-quality" beams

(beam spot, divergence, timing)

- For long half-lives only

Examples: ⁵⁶Ni, ⁵⁶Co, ⁴⁴Ti, ¹⁸F

+ for short half-lives

d(160,7F)n

gas target

"In-Flight"

heavy ion

accelerator

(~5 MeV/u)

- Beam spot typically 5 mm Energy resolution ~ 0.5-1%

resonator

(energy change,

debuncher)

fragment

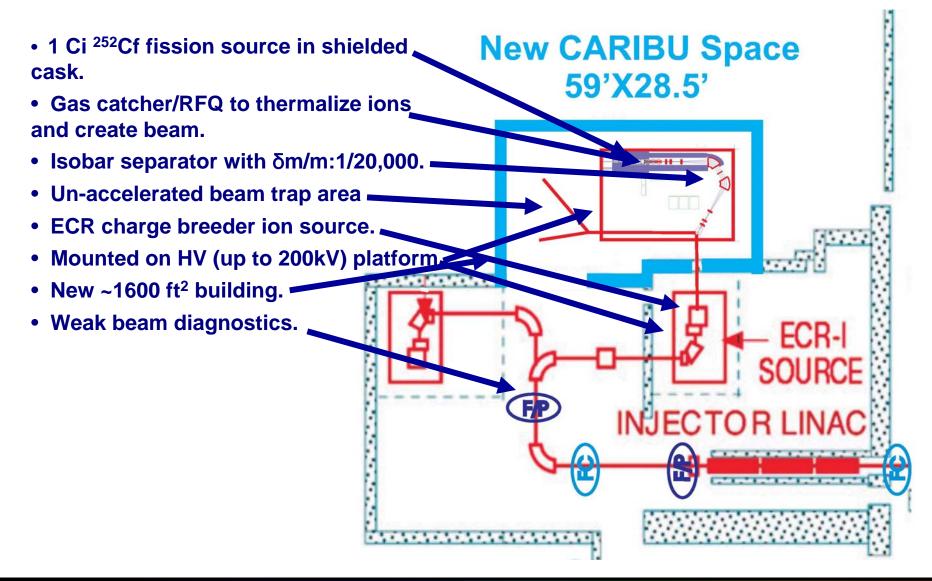
separator

Examples: ⁶He, ⁸Li, ⁸B, ... ³⁷K

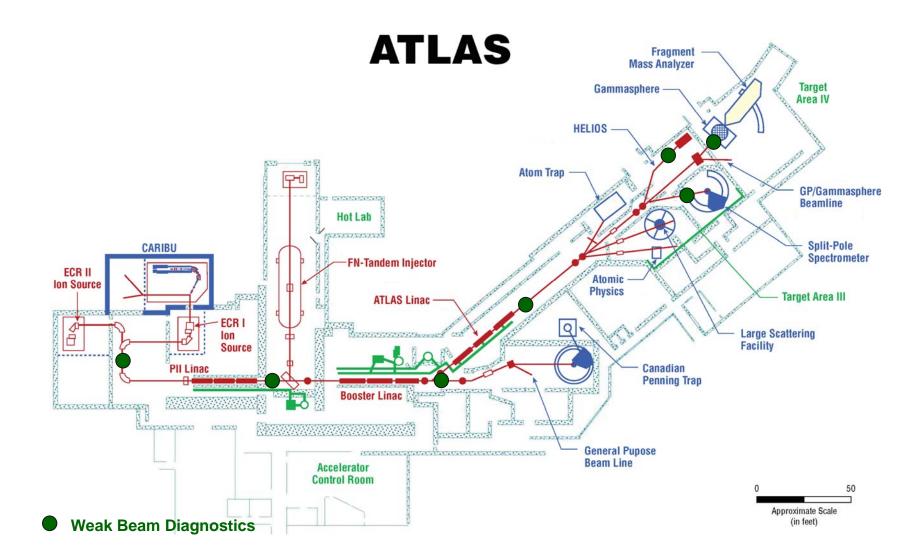
experiment

radioactive

ion beam


ATLAS Radioactive Beam Production - Demonstrated

lon	Reaction	Intens. #/s/pnA	Open Angle	Prod. Energy	Max. Rate , #/s
⁶ He	d(⁷ Li, ⁶ He) ³ He	150	19°	75 (MeV)	1 x 10 ⁴
⁸ Li	d(⁷ Li, ⁸ Li)p	2000	11°	71	1.5 x 10⁵
⁸ B	³ He(⁶ Li, ⁸ B)n	10	13°	27	
¹¹ C	p(¹¹ B, ¹¹ C)n	2300	4.5°	105	2 x 10 ⁵
¹² B	D(¹¹ B, ¹² B)p	~2500			
¹² N	³ He(¹⁰ B, ¹² N)n	<25	9.5°	73/100	
¹⁴ O	p(¹⁴ N, ¹⁴ O)n	1200	2.9°	170	
¹⁶ N	d(¹⁵ N, ¹⁶ N)p	30000	5.4°	70	3 x 10 ⁶
¹⁷ F	d(¹⁶ O, ¹⁷ F)n p(¹⁷ O, ¹⁷ F)n	20000 20000	4.5° 1.7°	~90	2 x 10 ⁶
¹⁹ Ne	p(¹⁹ F, ¹⁹ Ne)n				
²⁰ Na	³ He(¹⁹ F, ²⁰ Na)2n	~1		148	
²¹ Na	d(²⁰ Ne, ²¹ Na)n p(²¹ Ne, ²¹ Na)n	4000 8000	4.0° 2.6°	113 113	2 x 10 ⁶
²⁵ AI	d(²⁴ Mg, ²⁵ Al)n p(²⁵ Mg, ²⁵ Al)n	1000 2000	3.7° 2.2°	204 180	
²⁷ Si	p(²⁷ Al, ²⁷ Si)n				
³⁷ K	d(³⁶ Ar, ³⁷ K)n	1200	2.2°	280	
¹⁸ F	Two-accel.				6 x 10 ⁶
⁴⁴ Ti	Two-accel.				2 x 10 ⁶
⁵⁶ Ni ⁵⁶ Co	Two-accel.				5 x 10 ⁴ 2 x 10 ⁵


4

²⁵²Cf Fission Source System

Layout for ²⁵²Cf fission source system at ATLAS

The CARIBU (CAlifornium Rare Ion Breeder Upgrade) Project

Californium Source Characteristics

- > CARIBU will use fission fragments from a 1 Ci source of 252 Cf.
- Start with two weaker sources ~3 mCi and ~70 mCi
- ²⁵²Cf, produced at the High Flux Reactor at Oak Ridge, will be electroplated by ORNL as an open source on a polished SS plate. Similar sources are in use at ATLAS & INEL.
- > Funding constraints jeopardize the continued production of Cf at ORNL.
- > Alternative Russian supplier will use a painting technique.
- Source is sealed in a welded double container in a DOT certified cask.
- To minimize flaking & energy spread, the thickness of the deposit is kept to a practical minimum.
- > ²⁵²Cf has a fairly short lifetime of 2.645 yrs, so source thickness is small.
 - 1 Ci of ²⁵²Cf is 1.9 mg; over an ~2x6 cm ellipse area. This yields a density of ~150 mg/cm²

The CARIBU (CAlifornium Rare Ion Breeder Upgrade) Project

The current funding situation for Cf production in the U.S. leaves the CARIBU project with grave uncertainties regarding the project's viability if the U.S. ceases to produce Cf. We are negotiating with a Russian supplier for our initial 1 Ci source, but even if we are able to obtain the first source, it is not certain that this will be able to continue. The current level of Cf production, I am told, may not be sufficient to provide the world's needs.

R. Pardo

Isotopes used for calibration and other purposes

■ ⁵⁴Mn ⁵⁶Co, ⁵⁷Co, ⁶⁰Co ⁶⁵Zn ⁸⁵Sr 88Y ¹¹¹In ¹¹³Sn ¹³⁷Cs ¹³⁹Ce, ¹⁴¹Ce ¹⁵²Eu ¹⁸²Ta ²⁰³Hg ²⁰⁷Bi ²²⁵Ra ²²⁸Th, ²²⁹Th ²³³U, ²³⁸U ²⁴³Am ²⁴⁸Cm

ATIONAL LABORATORY