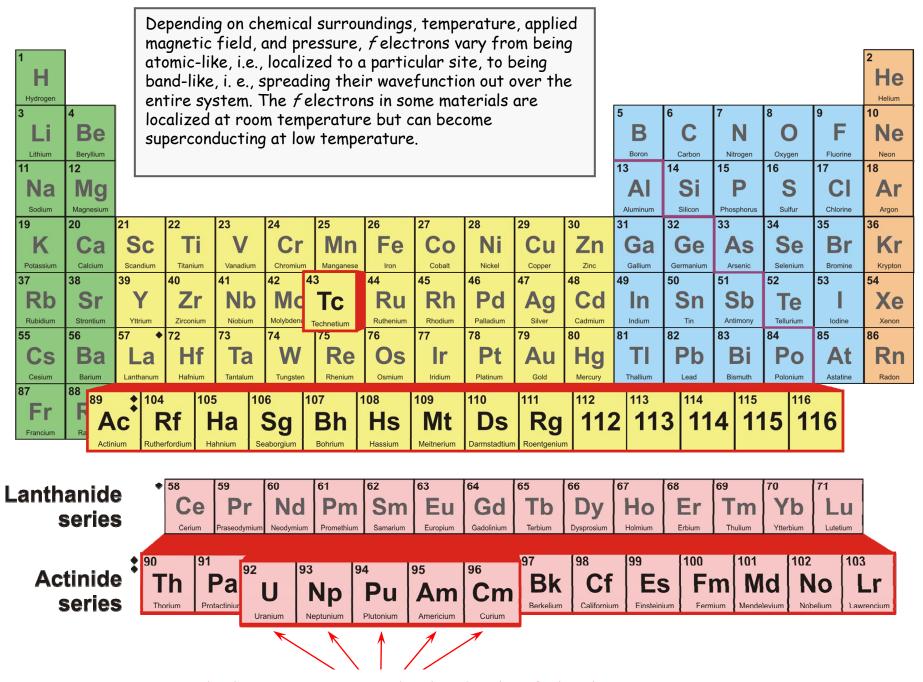
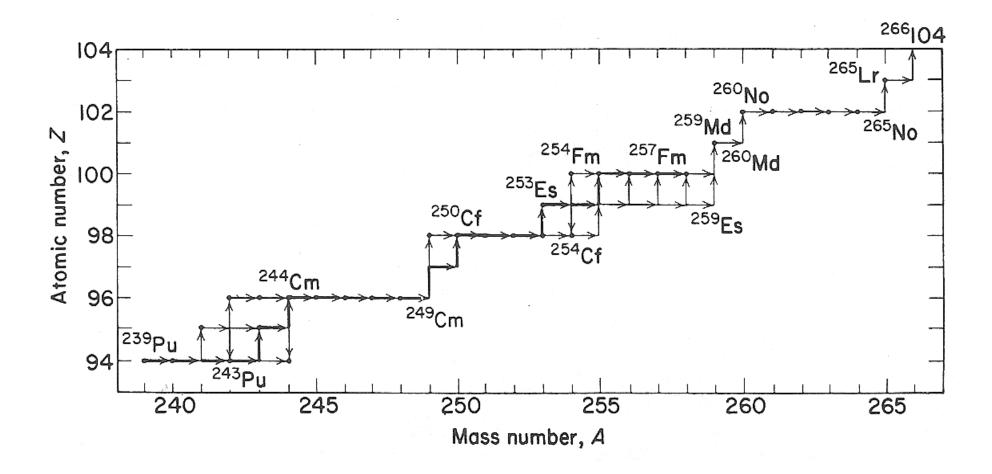
Heavy Element Chemistry Portfolio

Lester R. Morss Office of Basic Energy Sciences US Department of Energy Washington, DC USA


> DOE Isotopes Workshop August 2008

> > 1

Heavy Element Chemistry Portfolio


- Fundamental understanding of bonding and reactivity of the actinides, especially properties related to presence of 5f electrons.
 - Elements through Cf at \geq microgram scale; short-lived isotopes with tracers.
 - Synthesis
 - Chemical bonding and speciation
 - Coordination and environmental chemistry
 - Theoretical methods to calculate electronic properties, molecular structure, and reactivity
- Source Bonding and reactivity of Np, Pu, Am, and Tc to control environmental consequences of release of radioisotopes
- Chemical properties of the transactinides, developing new techniques for nuclei with half-lives of seconds to tens of seconds.
- Support summer radiochemistry programs for undergraduate students (grant with oversight by ACS).

The Actinide Challenge: Understanding 5f Electron Behavior

Actinide elements important in the closed nuclear fuel cycle

Production of transplutonium elements by slow-neutron irradiation

Nuclear reaction sequence for production of transplutonium elements by intense slow-neutron irradiation. The principal path is shown by heavy arrows (horizontal, neutron capture; vertical, beta decay). The sequence above ²⁵⁸Fm is a prediction.

Production	of transc	urium is	sotopes i	n USA a
------------	-----------	----------	-----------	---------

Isotope	Half-life	Amount/year, 1983	Amount/campaign, 2003
²⁴⁸ Cm	3.48 x 10 ⁵ yr	150 mg ^b	100 mg ^b
²⁴⁹ Bk	330 d	50 mg	45 mg
²⁴⁹ Cf	351 yr	50 mg ^c	<45 mg ^c
²⁵² Cf	2.645 yr	500 mg	400 mg
²⁵³ Es	20.47 d	2 mg ^a	1-2 mg ^d
²⁵⁴ Es	275.7 d	3 μg	4 µg
²⁵⁷ Fm	100.5 d	1 pg	1 pg

^a One or two separation campaigns per year until about 1995; one campaign every 18-24 months from about 1995 to 2003. ^b From α decay of ²⁵²Cf.

° From β decay of ²⁴⁹Bk.

^d Mixed with 0.06-0.3% ²⁵⁴Es; chemical separation of ²⁵³Cf followed by its β decay can yield ~200 μ g of isotopically pure ²⁵³Es.

Ion types and colors for actinide ions in aqueous solution

Element	M^{3+}	\mathbf{M}^{4+}	$\mathrm{MO_2}^+$	${\rm MO_{2}}^{2+}$	$MO_4(OH)_2^{3-}$ (alkaline soln)	
actinium	colorless					
thorium		colorless				
protactinium		colorless	colorless			
uranium	red	green	color un- known	yellow		
neptunium	blue to pur- ple	yellow-green	green	pink to red	dark green	
plutonium	blue to violet	tan to orange	reddish- purple	yellow to pink-orange	dark green	
americium	pink or yel- low	color un- known	yellow	rum-colored		
curium	pale green	color un- known				
berkelium	green	yellow				
californium	green					

No. of 4f	f Lanthanide series					Actinide series						
or 5f electrons	2+ ion	Radius (Å)	3+ ion	Radius (Å)	4+ ion	Radius (Å)	2+ ion	Radius (Å)	3+ ion	Radius (Å)	4+ ion	Radius (Å)
0			La ³⁺	1.032	Ce^{4+}	0.87			Ac ³⁺	1.12	Th^{4+}	0.94
1			Ce ³⁺	1.01	Pr ⁴⁺	0.85			Th^{3+}		Pa ⁴⁺	0.90
2			Pr ³⁺	0.99					Pa ³⁺	1.04	U^{4+}	0.89
3			Nd^{3+}	0.983					U^{3+}	1.025	Np^{4+}	0.87
4	Nd^{2+}	1.20^{1}	Pm ³⁺	0.97					Np^{3+}	1.01	Pu^{4+}	0.86
5			Sm ³⁺	0.958					Pu ³⁺	1.00	Am^{4+}	0.85
6	Sm^{2+}	1.18^{1}	Eu^{3+}	0.947					Am ³⁺	0.975	Cm^{4+}	0.84
7	Eu^{2+}	1.17	Gd^{3+}	0.938	Tb^{4+}	0.76	Am ²⁺	1.16 ¹	Cm ³⁺	0.97	Bk^{4+}	0.83
8			Tb^{3+}	0.923					Bk^{3+}	0.96	Cf^{4+}	0.821
9			Dy^{3+}	0.912					Cf^{3+}	0.95	Es^{4+}	0.81
10	Dy^{2+}	1.07	Ho ³⁺	0.901			Cf^{2^+}	1.14	Es^{3+}	0.93		
11			Er^{3+}	0.890					Fm ³⁺			
12			Tm^{3+}	0.880					Md^{3+}			
13	Tm^{2+}	1.03	Yb^{3+}	0.868					No ³⁺			
14	Yb^{2+}	1.02	Lu^{3+}	0.861			No ²⁺	1.05	Lr^{3+}			

¹ Corrected to coordination number 6.