

- Heavy Element Chemistry with long-lived isotopes only accessible using actinide targets
- Determination of the chemical properties of the elements is the most fundamental goal in all of chemistry. 102 ≤ Z ≤ 114 represents 12% of the periodic table

- Isotopes of elements from Z=102 through Z=114, with half-lives long enough for chemical separations can be produced in reactions with long-lived actinide targets:
 - ²⁴⁴Pu(³⁰Si,5n)
 ²⁴⁴Pu(²⁷Al,4n)
 ²⁴⁴Pu(²⁶Mg,5n)
 ²⁴⁴Pu(²³Na,5n)
 ²⁴⁴Pu(²²Ne,5n)
 ²⁴⁴Pu(¹⁹F,5n)
 ²⁴²Pu(²⁶Mg,5n)
 - ²⁴⁸Cm(²⁶Mg,5n)
 ²⁴⁸Cm(²³Na,5n)
 ²⁴⁸Cm(²²Ne,5n)
 ²⁴⁸Cm(¹⁹F,5n)
 ²⁴⁸Cm(¹⁸O,5n)
 ²³⁸U(²³Na,5n)
 ²³⁸U(²²Ne,5n)
- 10-s ²⁶⁹108
- 15-s ²⁶⁷107
- **15-s** ²⁶⁵106
- 34-s ²⁶²105
- 78-s ²⁶¹104
- 26-s ²⁵⁶103
- 3.1-m ²⁵⁵102

"MISSING ELEMENTS" ²⁴⁹Bk(⁴⁸Ca,xn)^{297-x}117; ²⁵⁴Es(⁴⁸Ca,xn)^{302-x}119; ²⁴⁹Cf(⁵⁰Ti,xn)^{299-x}120

NEED OF CONFIRMATION

- 2.6 s ²⁸⁹114
 0.48 s ²⁸⁴113
- ²⁴⁴Pu(⁴⁸Ca,3n) ²⁴³Am(⁴⁸Ca,3-4n)^{288,287}115→α→^{284,283}113
- 87ms ²⁸⁸115

61ms ²⁹³116

- ²⁴⁸Cm(⁴⁸Ca,3n)
 ²⁴³Am(⁴⁸Ca,3n), ²⁸⁷115 ²⁴³Am(⁴⁸Ca,4n)
- 1 ms ²⁹⁴118 ²⁴⁹Cf(⁴⁸Ca,3n)

OUR ISOTOPE NEEDS ²⁴²Pu, ²⁴⁴Pu, ²⁴³Am, ²⁴⁵Cm, ²⁴⁹Bk, ²⁴⁹Cf, ²⁵⁴Es ⁴⁸Ca

- 3.6-s ²⁸⁰111 ²⁴³Am(⁴⁸Ca,3n)²⁸⁴113 $\rightarrow \alpha \rightarrow$ • 11.1-s ²⁸¹110
- 29-s ²⁸⁵112 ²⁴⁴Pu(⁴⁸Ca,3n)²⁸⁹114→α→

 244 Pu(48 Ca,3n) 289 114 $\rightarrow \alpha \rightarrow \alpha \rightarrow$

Heavy Element Chemistry and Physics

CHEMISTRY POSSIBLE

- This encompasses selected isotopes that are of interest to the Stockpile Stewardship or Threat Reduction (nuclear forensic) Programs. Improved knowledge of their properties (such as neutron-induced cross sections, fission yields, etc.) are needed to improve our understanding, modeling, and certification of nuclear weapon systems in the US arsenal. In some cases these isotopes are needed as tracers.
- 1. Selected actinide species including: ²³²⁻²³⁸U, ²³⁵⁻²³⁹Np, ²³⁶⁻²⁴⁵Pu, ²⁴⁰⁻²⁴⁴Am and their decay products. In most cases isotope enriched. Short-lived isotopes such as ²³⁷U (6.75 d, can be produced in HFIR), ²⁴⁰Am(2.12 d, can be produced at ICF) are of currently of high interest.

- Selected fission products, activation products, and neutron-deficient isotopes. A partial, list of isotopes includes the following:
- ^{7,10}Be ^{73,74}As, ⁸³Rb, ⁸⁸Y, ^{88,95}Zr, ^{101,102}Rh, ¹⁰⁵Ag, ^{135,137}Cs, ¹⁴⁴Ce, ¹⁵¹Sm, ¹⁴⁹⁻¹⁵⁵Eu, ¹⁴⁸⁻¹⁵³Gd, ^{157,158}Tb, ¹⁶⁶Ho, ¹⁶⁸⁻¹⁷¹Tm, ^{173-174,177}Lu, ^{178m}Hf, ¹⁷⁹Ta, ^{181,185,188}W, ¹⁹⁴Os, ¹⁸⁹⁻¹⁹⁴Ir, ¹⁹⁵Au, ²⁰⁴Tl, ²¹⁰Bi

- IPF Produces: Na-22, Ge-68, As-73, Sr-82, Y-88, Cd-109
- LANL Uses: H-3, C-14, CI-36, Ge-76, Sr-90, I-129, Cs-137, Ba-133, Pm-149, Eu-152,154,155, Gd-153, Tm-170,171, Lu-173, TI-204, Ra-226,228, Th-228,229, Ac-225, Cf-252, Np-237, all Th, U, Np, Pu and Am isotopes
- A continued growth in the use of all tracers is expected. Milligram quantities of actinide isotopes will be needed to study neutron induced fission. H-3, Pm-149, Ac- 225 and high purity actinides are listed as a high priority
- The main issue among the various LANL users is the availability of isotopes in sufficiently high purity levels.
 Purity of isotope dilution tracers is critical for making highquality actinide measurements with minimal uncertainties.
- For stable isotopes cost is a major factor

Available online at www.sciencedirect.com

annals of NUCLEAR ENERGY

Annals of Nuclear Energy 33 (2006) 700-733

www.elsevier.com/locate/anucene

Nuclear data sensitivity, uncertainty and target accuracy assessment for future nuclear systems

G. Aliberti ^{a,*}, G. Palmiotti ^a, M. Salvatores ^a, T.K. Kim ^a, T.A. Taiwo ^a, M. Anitescu ^a, I. Kodeli ^b, E. Sartori ^b, J.C. Bosq ^c, J. Tommasi ^c

^a Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439, USA
 ^b NEA Databank, Paris, France
 ^c CEA-Cadarache, DER/SPRC Bât. 230, 13108 St-Paul-Lez-Durance, France

Received 5 December 2005; accepted 2 February 2006 Available online 5 May 2006